Studies on the Protease of Fishes (6).

On the Enzymatic and Chemical Properties of the Enzyme in Pyloric Appendage and pH of Stomach-juice of albacore (Thunnus alalunga).

By

Minoru FUJII

The optimum pH of the proteolytic enzyme in the pyloric appendage of albacore is about pH 8.5 and the optimum temperature of it is about 40°C. The percentage of the proteolytic enzyme extracted with water from pyloric appendage of albacore was 76% and this extraction rate is greatly influenced by pH of added solution, namely a very large value at pH 8.5, but smaller one at acidic. The pH of stomach-juice of albacore is neutral or slightly alkaline (pH 6.8~7.3).

結 言

魚類プロテアーゼの研究実験として今日研究して来たが分は当社に於いて容易に且容易に得ることの出来る材料としては鰤が主として大型魚である鰤、鰤の類は入手難のためである。従つて小型魚プロテアーゼの酵素化学的性質が大型魚の鰤に於ける適用しが得るか否かに就いてはより一層確めて置くべきである。學者も本年1月中旬香港ビンガマガロノの鰤入港を入手出来たので報告に従つて粉実験を調査し同の方を酵素化学的性質に就いて実験をすることを得た。又当所鰤須強酸化水29年及本年2月末香港洋に於いて鰤偏場観察及び鰤偏場観察を行ったので頭船製造者既製助手田川昭二氏に鰤胃液のPHの調査を依頼したが彼の結果を報告する。此の報告を行いに当たり試料を分与して下さった清水食品株式会社尾山東・宮部金吾の氏、試料の採取及び調製に協力していただかつた。尾川漁業試験場技官下田型部氏、終始実験に協力された富田茂吉、及び田川昭二氏の努力に対し感謝の意を表する。

実験の部

材料：昭和30年1月中旬清水食品株式会社清水工場に入荷中のビンガマガロから採取し常法に従つてアセトン・エーテル処理を施した後乾燥し粉末したものである。

1) 至適水素イオン濃度に試して

※ 水産講義所研究集録 第76号。
粉末試料0.1gに蒸留水を添加し抽出を行い全液を50ccとしその5ccを蒸留アミノ酸に添加作用させた後常法の通りに非浸透水可溶性酵素及びアミノ態酵素を求めた。防錫剤として食和フッスクリン液を反応液に添加することは後に述べるが、鯖浸透アミノ酸液は5%のものと50cc添加することに改めた。得た実験結果の一例を示すと第1表の通りである。

<table>
<thead>
<tr>
<th>pH</th>
<th>7</th>
<th>8</th>
<th>8.5</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₄-N (cc) × 10⁻³</td>
<td>8.4</td>
<td>16.0</td>
<td>18.0</td>
<td>12.1</td>
</tr>
<tr>
<td>Non-protein soluble-N (mg) × 10⁻³</td>
<td>3570</td>
<td>3668</td>
<td>3675</td>
<td>3650</td>
</tr>
</tbody>
</table>

第1表の示す様に非浸透水可溶性酵素及びアミノ態酵素の値はpH 8.5に於て最大値を示している。従って蒸留水素イオン濃度は約pH 8.5である。

2）至適温度に就いて
粉末試料0.5gの水抽出を行い50ccとしその2cc宛を鮮魚試料を反応液のpHを8.5、反応時間を1時間30分として2種異なる温度に於て作用力を測定し第2表を得た。

<table>
<thead>
<tr>
<th>Temp. (℃)</th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₄-N (cc) × 10⁻³</td>
<td>11.6</td>
<td>22.0</td>
<td>28.0</td>
</tr>
<tr>
<td>Non-Protein soluble-N (mg) × 10⁻³</td>
<td>4625</td>
<td>5265</td>
<td>5905</td>
</tr>
</tbody>
</table>

次に反応液のpHを8、反応時間を2時間とし、共々異なる温度に於ける作用力を測定して第3表の示す通りの結果を得た。又0℃から60℃の広範囲の温度間の成績を示すと第4表の通りである。

<table>
<thead>
<tr>
<th>Temp. (℃)</th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₄-N (cc) × 10⁻³</td>
<td>10.0</td>
<td>15.0</td>
<td>12.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temp. (℃)</th>
<th>0-0.5</th>
<th>10</th>
<th>20</th>
<th>27</th>
<th>43</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₄-N (cc) × 10⁻³</td>
<td>1</td>
<td>2.6</td>
<td>9.4</td>
<td>14</td>
<td>18.6</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>Non-Protein soluble-N (mg) × 10⁻³</td>
<td>325.7</td>
<td>721.7</td>
<td>986.7</td>
<td>1171.7</td>
<td>1431.7</td>
<td>1381.7</td>
<td>931.7</td>
</tr>
</tbody>
</table>

Table 1. Opt. pHe of proteolytic activity of pyloric appendage of albacre (Thunnus alalunga). (Condition of temp. : 35℃, Period of react. : 1.5 hrs. Substrate : Casein)

Table 2. Opt. temp. of proteolytic activity of pyloric appendage of albacre (Thunnus alalunga). (pH of solution : 8.5) (Period of react. : 1.5hrs. Enzyme : Bung (as powder). Substrate : Casein.)

Table 4. Opt. pH of proteolytic activity of pyloric appendage of albacre (Thunnus alalunga). (pH of solution : 8.5) (Period of react. : 2hrs.)

3. プロテアーゼの抽出量と抽出時間に就いて

粉末試料0.05gに約10ccの蒸留水を添加して常温に1時間振る掛けた後、さらに24時間後に分離を行って上澄液を固形物を分けて、それぞれを蒸留水で洗浄し、カゼインに作用させ第1表の結果を得た。

Table 5. The percentage between the water-soluble-protease and the so-called adsorbed protease. (Enzyme: 50 mg (as powder). Period of extraction: 1 hr, Period of react.: 7 hrs, Temp. of react.: 30℃)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Liquid-portion</th>
<th>Solid-portion</th>
</tr>
</thead>
<tbody>
<tr>
<td>N4=2-N</td>
<td>50.0</td>
<td>16.0</td>
</tr>
<tr>
<td>Activity (%)</td>
<td>76</td>
<td>24</td>
</tr>
</tbody>
</table>

次に0.05gの粉末試料4個を各々10ccの蒸留水を加えて30、60、90及び120分間プロテアーゼ抽出を行い、各々の抽出液をカゼインに作用させて得た結果は第2表の通りである。

Table 6. The relation of the enzyme-quantity to the extraction-time. (Condition of temp.: 30℃, Period of react.: 7 hrs, Enzyme: 50 mg (as powder)).

<table>
<thead>
<tr>
<th>Period of extraction (minutes)</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH4=N (cc) x 10^-2</td>
<td>48.4</td>
<td>51.0</td>
<td>51.0</td>
<td>55.4</td>
</tr>
</tbody>
</table>

各々及び1表の結果から水抽出プロテアーゼ量は74％であるので、溶液を24時間のプロテアーゼ作用力が残っていることになる。従って常温で溶出される酵素量は1時間の抽出で一定値に達する。

4. 各種溶液伊オン濃度水溶液に依るプロテアーゼの抽出に就いて

水を抽出剤として使用した場合水のpHは6である。従ってpHの異なる溶液を抽出剤として使用した場合酵素の抽出量に差異を生することが否かを知るため各種pHの緩衝溶液（CLARK & LUBSの塩酸アシモニア緩衝液、トリエチルアミンを混和使用）の一定量を固形試料に添加して、その抽出に就いて実験を行った。

魚類プロテアーゼに関する研究

103
添加して1時間抽出を行い次に遠心分離に依り上液を分液しその上液をから一定量を取って用いガゼン溶液法に依り後接液のpHを8.5に調節して作用力を測定した。この場合添加した緩衝液の器液の塩類及びその濃度が抽出に及ぼす影響を考えるべきであるがここでは特にpHの関係のみを考慮することにした。得た結果は第4表の示す通りである。

Table 7. The extraction of protease by solution of different pH. (Period of reaction: 1 hr. Period of react.: 2hrs. Enzyme stains as powder.)

<table>
<thead>
<tr>
<th>pH</th>
<th>4.8</th>
<th>6.8</th>
<th>8.5</th>
<th>8.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₃-N (cc) x 10⁻⁴</td>
<td>18.4</td>
<td>21.0</td>
<td>23.4</td>
<td>21.0</td>
</tr>
</tbody>
</table>

第7表から明らかな如くpH4.8の酸性溶液にては抽出量は少くアルカリ性になるに従って多くなりpH8.5で最大抽出量を示している。之に顕著の場合とよく一致する。

5）胃液のpHについて
pHの測定方法は小魚の場合と全く同じ胃部を切開してその内容を愛洋紙株式会社製のpH試験紙を押しつけてpHを測定方法では第3表の様な結果を得た。

Table 8. The pH of stomach-juice of yellow fine tuna.

<table>
<thead>
<tr>
<th>Kind of fishes</th>
<th>Weight(Kg)</th>
<th>Length(cm)</th>
<th>pH(Stomach juice)</th>
<th>Condition of fishes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow fine tuna</td>
<td>65.3</td>
<td>146</td>
<td>7.5</td>
<td>20 minutes after killed, almost empty</td>
</tr>
<tr>
<td></td>
<td>25.1</td>
<td>115</td>
<td>6.3</td>
<td>20 minutes after killed, squids 0: half-digestive.</td>
</tr>
<tr>
<td></td>
<td>58.0</td>
<td>147</td>
<td>7.6</td>
<td>Suuri pike 1.</td>
</tr>
</tbody>
</table>

第7表の結果から鰤の様な大型魚の胃液pHは死直後の場合明らかに酸性性は著しくアルカリ性に傾いていることが判る。向の様に示し得るが死後の経過時間と比較的高いと見られる鰤の胃液pHは殆ど6.2～6.4の間にあつた。この事情は小型魚の場合とよく一致するもので大型魚の胃消化も中性乃至著しくアルカリ性消化であることは明らかである。

総括

鰤鰤門系プロテアーゼの酸性化学的性質及び胃液のpHに就いて検討した。

1）鰤鰤門系プロテアーゼの胃消化酵素イオン濃度は約pH8.5である。
2）消化酵素の最適温度は約40℃である。
3）アセトン・エーテルで処理した粉末試料から未抽出を行う場合抽出率は約76%であった。又抽出液のpHが8.5の時酵素量は最大となり酸性側では少ない。
4）鰤鰤胃液のpHは鰤、マグ、ヘラ等の様な小型魚の胃液の夫と同じく中性乃至著しくアルカリ（pH 6.8～7.3）である。

文献

1）大谷武夫・富士川 潤：1957. 魚類の化学、492。
2）藤井光・富田輝一・江良正德：1955. 水産試験所研究報告 1, 58～62。