山口県豊田湖(木屋川ダム)に於ける
陸封鮎の生態学的研究—Ⅰ*

藤 本 政 男

Ecological Studies on the Land-locked Ayu (Plecoglossus altivelis T. et S.)
Propagated in Koyagawa Dam (Lake Toyota) in Yamaguchi Prefecture I

By
Masao Fujimoto

In May 1957 the writer caught a lot of land-locked Ayu coming upstream in the lower course of the River Tawarayama, which empties itself into Koyagawa Dam, or Lake Toyota in Yamaguchi Prefecture. This has made him confirm that the land-locked Ayu propagate themselves in the Dam. Koyagawa Dam is an artificial lake, or what is called a reservoir, built up by damming up the water in the upper course of the River 'Koyagawa' located in the western part of Yamaguchi Prefecture, thus keeping the fish from coming upstream from the sea. The dam covers an area of 1.066 square kilometers when it is full, its maximum depth being 39 meters. It is quite unusual that the Ayu fish propagate themselves in such an artificial lake, and the writer desires to develop the valuable fish resources by sending the fry of the Ayu to other lakes or rivers in our country for their reproduction, and has already set about investigating the Ayu fish from ecological point of view. The outline of the writer's study runs as follows.

緒 言

陸封鮎は琵琶湖の外に、鹿児島県黒崎湖、賀池、宮崎県飯沼、山梨県西湖1, 5) 及び木栖湖等の天然湖沼に於いても多少ながら繁殖することが知られている1, 5). 然し、人工湖に於ける小鮎の繁殖は、筆者等が往年朝鮮総督府水産試験場に在勤当時、全羅北道東津水利組合雲岩貯水池に繁殖させた記録2) 以外に報告がなかったが、最近、筆者は山口県豊田湖（木屋川ダムの通称）に陸封鮎の繁殖を確認し、その調査結果の一部を既に予報した3). 今回は更にその後の研究を加えてことに発表する。

近年、吾国各地の河川に大小的人工湖沼が建設され、旧河川に於ける漁業権に対する補償或は新生水面の利用等に複雑な問題が諸々起きている。豊田湖に於ける小鮎の繁殖は現在の吾国の人工湖では最初の記録であるが、後述の如く、豊田湖は小規模のダムであるにかかわらず、小鮎の発生は可なりの数量に達し、従って、鮎の陸封繁殖に適まった条件を有していると思われ

※ 水産調査所研究農業第244号、1957年7月2日 受理
1957年 5月日本水産学会中国四国支部例会（福山）で一部発表

— 179 —
藤本政男
農水省河川局

結果

1 木田湖の概況

木田川ダムは、山口県の西端に近い後山温泉近くに源を発し、下流は下関東部に於いて吉田川となって瀬戸内海に注ぐ。水量は常時比較的豊富であるが川幅は余り大きくない木田川に建設されている（第1図B）。即ち、流路延長43.5㎞の木田川を豊田町大河内に於いてコンクリート堰堤で遮断して出来た人工湖である。堰堤及び貯水池の規模概要是下記の如くである。

堰堤高さ：39m（溢流部）；41m（非溢流部）、長さ：174.3m、体積：84500㎡、集水面積：84.1km²、貯水容量：21,749,600㎥、潜水面積：1,606km²、深さ（開口時）：30m

木田川ダムは山口県木田川管理区等開発事業計画に基づき、下図の上水道及び工場用水等を供給する目的で建設された。工事は昭和15年に開始されたが、戦争で一時中断し、竣工したのは昭和30年であるから潜水してから末の2カ年余を経過したに過ぎない。

豊田湖は第1図Aに示す如く湾曲した湖岸に包まれ、上流部に僅かの耕地を残すのみで、外は急斜な傾斜を続らし、湖岸部には落葉型を混ぜた竹林が多い。

厳冬期と思われる昭和32年2月2日（気温7.5℃）に於ける潮水水温の分布を5ヶ所に於いて観測した結果は第1図Cに示す如くであった。即ち、湖の上流部は7～8℃、それより下
流の堰堤に沿う広い水域では表面水温6.6〜7.1℃で、底層は6.5〜7.0℃、堰堤に近い最深部の底層は最低水温を示した。同日、豊田湖に近い新川河口附近では8.6〜8.9℃（水深、6.9〜7.0℃）で、湖水温よりも僅かに高温であった。更に、同年8月27日の昼間（気温31℃）に於ける水温測定では湖水の全表面は29℃内外を示し、水深5m、25.6℃〜27.6℃・10m、22.9℃〜23.9℃・15m、20.8℃〜20.9℃・20m、17.6℃を示し、湖水温を増す傾向を示していた。溝藻の水深25mは11℃を示していた。又同日新川の水温は28℃（気温30℃）で湖水表面より少し低かったが、従って湖水特性による湖沼観測では111）酸熱帯湖の中でも人工開節湖の部類に属する。湖水の化学成分、生物相の詳細は後の発表する。

2 植物類

木屋川の魚類で特徴的な点は、現在までに知られているのは円口類のスナヤツメを含む手記の26種である。

アユ、メダカ、ナマズ、ギギ、アカザ、ウナガニゴイ、イトモロコ、カマツカ、ムギク、モコ、ウグイ、アブラハ、オイカワ、カワウソ、フナ、コイ、ニゴイ、ドジョウ、シマジラ、ウナギ、カジカ、ドコ、ヨシノボリ、ヤリタナゴ、オヤマ“They

即ち、吉田川と同じく瀬戸内海西部に注入する佐渡川110）とも殆ど同じ種類の魚類である。

3 地質類

a．確認までの経過：木屋川に前記の堰堤が築造される以前は海産魚が佐渡川の河口に止まっていた。昭和22年6月現在の堰堤から約10km下流に取水堰堤（コンクリート堤の高さ10m）が出来て以来、それより上流には鰍の河口が全くみられなくなっているので各自鰍を数回に亘り移殖放流したがその成績は見るべきものがなかった。但しに木屋川ダムが着工した昭和30年の春頃湖川小池に1万尾、更に同31年度には仙崎湾産稚鰍1万尾をダムの上流に移殖放流した。ところが31年度は上記放流尾数に比較して、魚体は幾分小さく若しく多数の鰍が採捕された。それで著者は佐渡川の築堤を推定し、昭和32年度の稚鰍放流は停止することを地元漁業協同組合に勧告し、冬季以来佐渡川の確認と調査を執行した結果、4月9日に至り新川築堤の確実に知ることが出来た。

b．小池の形態と生態：筆者が豊田湖の湖上部で初めて多くの小池を採集したのは5月22日であり、築堤川に稚鰍が鰍上を始め始めた頃より既に可なりの日数が経過していた。その後8月初旬に至るまで河川の水域で数回標準を採集し、それ等の測定結果は次表に示す如くである。

<table>
<thead>
<tr>
<th>Date of collection</th>
<th>Body-length, mm (average)</th>
<th>Body-weight, g (average)</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 2, 1957 (7)</td>
<td>43 - 48 (45.5)</td>
<td>0.6 - 1.1 (0.66)</td>
</tr>
<tr>
<td>14, (15)</td>
<td>43 - 47 (45.5)</td>
<td>0.5 - 0.7 (0.63)</td>
</tr>
<tr>
<td>31, (83)</td>
<td>40 - 45 (42.0)</td>
<td>0.5 - 0.7 (0.60)</td>
</tr>
<tr>
<td>June 22, (7)</td>
<td>43 - 47 (46.0)</td>
<td>0.6 - 1.0 (0.76)</td>
</tr>
<tr>
<td>August 2, (8)</td>
<td>50 - 53 (51.0)</td>
<td>1.0 - 1.3 (1.20)</td>
</tr>
</tbody>
</table>

Table 1. Measurements and date of collection of the young Ayu, propagated in Lake Toyota.
Number of specimens examined is in parentheses.

即ち、体長、体重により普通に知られている小池よりも速かに小形で、明らか貯備するよう
に著しく衰えていっている為に頭部が大きく見え、一見した所ではスカワの稚魚に似た外観を呈し

* 豊田町西市 松本義則氏の採集校正による。

—181—
でない。この様に稚魚形の小鰤が大小の群をなして底栖しているのが、豊田湖 Stonoth は上流部、依川川の下流近くに認められた。この状態は5月上旬に至るまで続いて見られた。

上記のとくに、豊田湖産の小鰤は長崎湖産のそれに比較して短く後方を、約1/2の大ささに過ぎない。いわば雑小鰤である。然し、体色素および鰤の発生、顎系や消化器管の発達程度等を5月2日に採集した標本で調べると所谓「小鰤」として完全に発達している。即ち、5月初旬に採集した個体では、既に体色素が背部及び側線より前方の体側面に着色し発生し、特に頭部背面及び隠部では著しいが、5月14日以後の標本では色素は全体に発達し、胸鰤後方に至る本種特有の黒紋が従かに現われ初めている。鰤の発生状態は稚鰤の発育程度をよく示すので特に詳細に調べられたが、5月2日の標本では既に全体に発生し、大部分の鰤は circuli を2ヶ有し、特に尾鰤の前方では4ヶ認められたが後部の後背側の鰤には circuli は未だ認められる程度発達していなかった。5月中旬の標本では鰤は更によく発達されて見られた。顎系の発達程度も鰤と同様に重視すべき形質で、5月2日の標本では既に上下顎の両線に本魚特有の板状歯が内に強く発達し、この外に頸部、顎骨、口蓋骨及び舌骨等に円錐状の歯が生えている。然し、脇骨には未だ数個の稚鰤が残存するし、成魚の特徴である舌唇は殆ど生じていない。消化管は胃の分化が明瞭に認められ、体長45mmの個体で消化管全長は30mmに達し、松井（1938）の研究によると既に稚魚期を脱し成魚型を示している。幽門乳も多数発生し、腹膜は明らかで、輪状管で開始部に連絡している。

以上を要するに豊田湖産小鰤は他の湖沼の産の魚小鰤より非常に小形で、産出であればまだシラス期の大ささであるが、魚の諸形態から判断するとその成長段階は別途に小鰤としての成長を示している故、他の湖沼への放流試験として充分役立つことは6月の実験に成功され、豊田湖産魚の成魚期に及ぶことが期待できる。今後、小鰤の発生と成長を確認する上に、豊田湖に本年度に発生した標本の数を数計測し、水槽で観察することに計画している。
たのではないかと思われる。

要約及び結語

山口県西端に近い地域を流れる尾上川の上流部に構築された豊田湖においては、山口県と同様に設立された陸封湖の生態学的研究が行われている。豊田湖に於ける陸封湖の生態学的研究は、豊田湖に何故小漁が発生するかという明確な理由はまだ不明であり、目下検討中である。

豊田湖の小漁は尾上川の小漁に比較して約1/2の体長に及びない超小漁である。

然し、鰭、体色、軌跡及び消化器管の発達程度は既に成魚型に近い完全な小漁の特徴を示している。

豊田湖の小漁が何故に非常に僅かであるかに就いてはまだ判らないが、豊田湖は陸封湖の蓄養に事実に現実的な条件を有するものと思われる。

小漁蓄養の各種の条件を調査研究して、人工湖の生態学に着し、且つ蓄養小漁の移殖放流による河川の漁の生態に有力な役目を果たすことが考えられる。

終に、日本各地の人工湖にも小漁が蓄養されているか否かその可能性があるかに就いて今後多くの研究者の一層の注意を喚起する。