Study on the Diet of Yellow-Tail Cultivation—Ⅰ.
Fatty Acid Composition and the Properties of Lipid Extracted from Cold-Stored Sand-Eel

By

Tadashi Ueda and Teisuo Nagaok

It is necessary to take heed of diet freshness when yellow-tail, Seriola quinquemaculata, is fed on sand-eel, Ammodytes personatus, since fatty sand-eel caught in summer often demonstrates fat deterioration during its cold storage. The fish fed on such deteriorated diet occasionally depresses its quality having unpleasant alteration of epithelial pigments, namely "kuronbo".

In this paper, fatty-acid composition and the properties of lipid obtained from the sand-eel kept at -20〜-5°C have been discussed, because the qualitative change of sand-eel during its storage is supposed to be closely related to the pigmental alteration of yellow-tail. The results obtained are as follows:

1. The fatty-acid composition of the lipid extracted from spoiled fish kept at room temperature of about 30°C for 24 hours was nearly the same as that from fresh one (Fig. 2 and Table 3).

2. As for the lipid from the specimen kept at -20°C for almost six months, the slight change in fatty-acid composition was observed as shown in Fig. 3. No apparent change, however, was recognized in its general properties like in the case of the specimen kept at room temperature. The growth of puffer-fish, Fugu rubripes, fed on the same specimen kept at -20〜-5°C, showed no extraordinary change.

3. As for the commercial specimen kept under unsatisfactory storage administration for about 75 days at -10〜-5°C, the properties in general and the fatty-acid composition of its lipid obviously differed from fresh one. According to the analysis by

*水産大学校研究業績 第528号, 1967年12月27日 受理。
Contribution from the Shimonoseki University of Fisheries, No. 528.
Received Dec. 27, 1967.

**山口県水産課
gas-chromatography, the variations of C22:6 acid and an unknown substance which had the similar retention time to that of C17:0 acid were noteworthy as demonstrated in Fig. 4. The yellow-tail fed on the same specimen showed the typical appearance of “kuronbo”, and died soon after the occurrence of the symptom.

養魚の対象となる海産魚のうちで、1965年のハマチ産量は18,083トンに達し1)，トラフグ，マダイおよびその他の魚類の産量（192トン）を大きく上まわっている。そのため海産魚の養殖といえばハマチ養殖といわれるほど、この養殖事業は海面養殖の中心となっている。現在ハマチ養殖に使用されている飼料は、主として生鮮魚および冷凍魚であり、乾燥配合飼料は各地で試験的に投餌が行なわれている程度である。飼料として用いられる魚類にはイカナゴ、カタクチイワシ、マアジおよびサンマなどがある。キビナゴは漁獲の状況によって一部の地方で飼料として使用されている。これらの中でイカナゴは塩干などの加工に利用される魚類および幼魚期のものを除いては利用価値が低く、成魚のほとんどは養殖または放流飼料に供されている。過去10年間のイカナゴの平均漁獲量（加工用を除く）は83,970トン (3)，1965年の漁獲量は1kgのハマチ1,600尾が生産される111,706トンに達している。

原田1)はハマチ養殖飼料には、養殖の初期の目安として、水温が25〜28℃で、まだ最大水温に達しないときにはイカナゴ、また投餌量が最大になる頃にはマアジとイカナゴの配合飼料（1:2）が飼料効率、飼料水および飼料状態などから見て良好であると指摘している。またイカリナゴ、カタクチイワシおよびマアジを飼料として比較した場合には養殖ハマチはイカリナゴを最も好む。次にカタクチイワシおよびマアジの順に、また同じ魚種のときには合油量が大きいく、しかも新鮮なものを好むといわれる。

以上のようにイカナゴは飼料としてきわめて有用であるが、イカナゴの漁期は4〜6月であり、この時期のイカナゴは脂肪に富んだ成魚が主であるから、これをハマチ養殖の飼料にするためには長時間にわたり凍結冷蔵の必要がある。そのため保鮮管理が不適当なときには、イカナゴが飼料としての有用性を失うばかりか、ときには木村1)の報告にみられるような現象、すなわち体色が黒変して飼育をやめ発死することがある。

本報告ではイカナゴの保鮮中にイカナゴ油がどの程度酸化するかを、主として脂質の脂肪酸組成の変化の面から検討した結果について報告する。

1. 実験方法

1-1 試料魚：1966年8月間防府中部水域にあたる山口県光村沿岸で、カタクチイワシおよびイカナゴ魚を目的とする漁船で漁獲されたものを約2時間前に-20℃の冷蔵庫に凍結冷蔵した。この試料魚（イカナゴ）を試料1とする。

1966年6月中旬に試料1と同じ条件で漁獲されたものを試料2とする。この試料はグレース処理後養殖用冷蔵庫に-20〜-5℃で保管し、約75日間冷蔵したのちトラフグ飼料に供した。

試料3は試料2と全く同一条件で漁獲したのちに詳細調査の公称-20℃の冷蔵庫に-10〜-5℃で凍結冷蔵したものであるが、冷蔵中に7月下旬に冷蔵庫の故障により庫内温度が約2日間0℃以上に上昇した。なお、この試料3で養殖したハマチ1)は8月下旬頃より体色が黒変しはじめ、9月中旬にはほとんど全部が発死した。

* 漁獲しのよい海面に6×6×3.5m³の小型漁船1台を設置しハマチ約600尾を収容し、7月下旬より養殖を開始した。

— 52 —
試料魚からの脂肪の採取は醚取法によった。

1-2 トリメチルアミン (TMA) の測定: Dyer法を用いた。

1-3 酸化物質: DAIHE, HOLMAN によって改良されたヨーグルトリー法8)によった。

1-4 塩基脂肪酸の同定および定量: ガスクロマトグラフィーによった。同定の確実を図るために表層分
別を利用した方法9)も併用した。定量については、半価幅法と peak height 法10)の2方法を検討したが本
実験では peak height 法を採用した。なおガスクロマトグラフィーの条件は第1表に示すとおりである。

Table 1. Conditions for gas-chromatography.

<table>
<thead>
<tr>
<th>Apparatus</th>
<th>Shimadzu GC-1B type.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid phase</td>
<td>Diethylenglycol succinate polyester (10% w/w) on 60 to 80 mesh Shimalite-W.</td>
</tr>
<tr>
<td>Column</td>
<td>4 mm diameter, 3 m length.</td>
</tr>
<tr>
<td>Column temperature</td>
<td>205°C</td>
</tr>
<tr>
<td>Detector</td>
<td>Hydrogen Flame ionization detector system, 215°C</td>
</tr>
<tr>
<td>Carrier gas</td>
<td>Nitrogen gas, flow rate......60 ml/min</td>
</tr>
<tr>
<td>Flow rate of hydrogen gas</td>
<td>48 ml/min.</td>
</tr>
<tr>
<td>Flow rate of air</td>
<td>1.35 l/min.</td>
</tr>
</tbody>
</table>

2. 結果ならびに考察

2-1 試料魚の室温放置中における変化: 試料1を冷蔵庫より出し、直射日光の当らない室温に放置した。

室温の変化を第1図に示す。放置中の試料魚の PH および TMA の変化を第2表に、抽出した脂肪の性状
変化ならびに脂肪酸組成の変化を第3表に示す。放置時間が5時間を超える頃から試料魚に腐敗臭が認め
られ、24時間後に試料は完全腐敗した。一方脂質の酸価は24時間後に4.3に増加し、酸価値は154.8に減少
したが、脂肪酸組成にはほとんど変化がなかった (第2図)。上田11)はシラネ油脂肪酸メチルエステルの
自動酸化の研究において、酸価吸収量と酸価の増加にはゆるやかなS字曲線関係があり、沃素価減少との関

![Fig. 1. Room temperature during experiment.](image)
Table 2. Value of PH and trimethylamine contents in the flesh of sand-eel No. 1, kept at room temperature for 24 hours.

<table>
<thead>
<tr>
<th>Storage time (hrs.)</th>
<th>0</th>
<th>3</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH</td>
<td>6.32</td>
<td>6.42</td>
<td>6.80</td>
</tr>
<tr>
<td>T M A (mg%)</td>
<td>0.5</td>
<td>0.7</td>
<td>57.4</td>
</tr>
</tbody>
</table>

Table 3. Variation of fatty-acid composition of lipids extracted from sand-eel, No. 1 during its storage at room temperature for 24 hours.

<table>
<thead>
<tr>
<th>Storage time (hrs)</th>
<th>0</th>
<th>3</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid value</td>
<td>0.7</td>
<td>1.8</td>
<td>4.3</td>
</tr>
<tr>
<td>Iodine value</td>
<td>162.9</td>
<td>161.0</td>
<td>154.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Storage time (hrs)</th>
<th>0</th>
<th>3</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid value</td>
<td>0.7</td>
<td>1.8</td>
<td>4.3</td>
</tr>
<tr>
<td>Iodine value</td>
<td>162.9</td>
<td>161.0</td>
<td>154.8</td>
</tr>
<tr>
<td>Fatty acids %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 0:0</td>
<td>tr</td>
<td>tr</td>
<td>tr</td>
</tr>
<tr>
<td>C 10:0</td>
<td>tr</td>
<td>tr</td>
<td>tr</td>
</tr>
<tr>
<td>C 12:0</td>
<td>tr</td>
<td>tr</td>
<td>0.1</td>
</tr>
<tr>
<td>C 13:0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>C 13:1?</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>C 14:0</td>
<td>4.9</td>
<td>5.0</td>
<td>5.1</td>
</tr>
<tr>
<td>C 16:0</td>
<td>17.1</td>
<td>16.4</td>
<td>17.0</td>
</tr>
<tr>
<td>C 16:1</td>
<td>6.3</td>
<td>6.3</td>
<td>6.4</td>
</tr>
<tr>
<td>C 17:0</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>C 17:1?</td>
<td>0.9</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>C 18:0</td>
<td>4.6</td>
<td>4.4</td>
<td>4.3</td>
</tr>
<tr>
<td>C 18:1</td>
<td>9.4</td>
<td>9.4</td>
<td>9.0</td>
</tr>
<tr>
<td>C 18:2</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>C 18:3</td>
<td>2.2</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>C 18:1?</td>
<td>4.8</td>
<td>4.9</td>
<td>5.1</td>
</tr>
<tr>
<td>C 19:0</td>
<td>1.2</td>
<td>1.1</td>
<td>0.9</td>
</tr>
<tr>
<td>C 20:0</td>
<td>4.0</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>C 20:1</td>
<td>1.2</td>
<td>1.2</td>
<td>1.1</td>
</tr>
<tr>
<td>C 20:2</td>
<td>1.2</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>C 20:3</td>
<td>14.5</td>
<td>14.8</td>
<td>14.8</td>
</tr>
<tr>
<td>C 22:0</td>
<td>25.0</td>
<td>25.5</td>
<td>25.7</td>
</tr>
<tr>
<td>C 24:1</td>
<td>1.5</td>
<td>1.8</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Fig. 2. Integral patterns of fatty-acid composition of the lipids from sand-eel, No. 1 kept at room temperature for 0, 3 and 24 hours.

- 0 hour, --- 3 hours, --- 24 hours.

* Upper figures of fatty-acid composition denote carbon number, and lower figures express the number of double bond in fatty acids.
Table 4. Value of PH and trimethylamine contents in the flesh of sand-eel, No. 1 during the cold storage at -20°C

<table>
<thead>
<tr>
<th>Storage time (days)</th>
<th>0</th>
<th>2</th>
<th>9</th>
<th>15</th>
<th>28</th>
<th>59</th>
<th>96</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH</td>
<td>6.32</td>
<td>6.40</td>
<td>6.47</td>
<td>6.47</td>
<td>6.50</td>
<td>6.50</td>
<td>6.00</td>
</tr>
<tr>
<td>TMA (mg %)</td>
<td>0.5</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>1.0</td>
<td>0.8</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Table 5. Variation of fatty-acid composition of lipids extracted from sand-eel during its cold storage.

<table>
<thead>
<tr>
<th>Sample examined</th>
<th>No. 1</th>
<th>No. 2</th>
<th>No. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage time (days)</td>
<td>0</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Acid value</td>
<td>0.7</td>
<td>1.0</td>
<td>1.1</td>
</tr>
<tr>
<td>Iodine value</td>
<td>162.9</td>
<td>158.3</td>
<td>162.4</td>
</tr>
<tr>
<td>*POV (m-eq/kg)</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Fatty acid, %

<table>
<thead>
<tr>
<th></th>
<th>C 9:0</th>
<th>C 10:0</th>
<th>C 11:0</th>
<th>C 12:0</th>
<th>C 13:0</th>
<th>C 14:0</th>
<th>C 15:0</th>
<th>C 16:0</th>
<th>C 17:0</th>
<th>C 18:0</th>
<th>C 19:0</th>
<th>C 20:0</th>
<th>C 21:0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tr.</td>
<td>tr.</td>
<td>tr.</td>
<td>tr.</td>
<td>tr.</td>
<td>tr.</td>
<td>tr.</td>
<td>tr.</td>
<td>0.1</td>
<td>tr.</td>
<td>tr.</td>
<td>tr.</td>
<td>tr.</td>
</tr>
<tr>
<td></td>
<td>tr.</td>
<td>tr.</td>
<td>tr.</td>
<td>tr.</td>
<td>tr.</td>
<td>tr.</td>
<td>tr.</td>
<td>tr.</td>
<td>0.1</td>
<td>tr.</td>
<td>tr.</td>
<td>tr.</td>
<td>tr.</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>4.9</td>
<td>4.9</td>
<td>5.1</td>
<td>5.2</td>
<td>5.2</td>
<td>5.2</td>
<td>5.5</td>
<td>5.6</td>
<td>5.2</td>
<td>3.9</td>
<td>4.6</td>
<td>4.5</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>1.0</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>17.1</td>
<td>17.3</td>
<td>17.6</td>
<td>18.0</td>
<td>17.8</td>
<td>18.1</td>
<td>18.4</td>
<td>18.1</td>
<td>17.1</td>
<td>14.1</td>
<td>20.0</td>
<td>18.1</td>
<td>21.0</td>
</tr>
<tr>
<td></td>
<td>6.3</td>
<td>5.4</td>
<td>6.5</td>
<td>6.6</td>
<td>6.7</td>
<td>6.8</td>
<td>7.1</td>
<td>6.7</td>
<td>6.0</td>
<td>6.5</td>
<td>6.6</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.0</td>
<td>1.2</td>
<td>1.1</td>
<td>0.9</td>
<td>9.4</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.9</td>
<td>0.8</td>
<td>0.9</td>
<td>1.1</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>4.6</td>
<td>4.3</td>
<td>4.7</td>
<td>4.6</td>
<td>4.7</td>
<td>4.8</td>
<td>4.7</td>
<td>4.5</td>
<td>4.6</td>
<td>5.6</td>
<td>4.7</td>
<td>4.4</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>9.4</td>
<td>9.0</td>
<td>10.1</td>
<td>10.1</td>
<td>10.1</td>
<td>9.4</td>
<td>9.9</td>
<td>9.3</td>
<td>11.1</td>
<td>10.7</td>
<td>9.9</td>
<td>13.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1</td>
<td>2.0</td>
<td>1.9</td>
<td>1.9</td>
<td>2.0</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>2.1</td>
<td>1.7</td>
<td>1.6</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>1.8</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.8</td>
<td>1.7</td>
<td>1.7</td>
<td>2.0</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>4.6</td>
<td>4.6</td>
<td>4.8</td>
<td>4.9</td>
<td>4.4</td>
<td>4.3</td>
<td>4.5</td>
<td>4.7</td>
<td>4.9</td>
<td>5.5</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>0.9</td>
<td>0.8</td>
<td>0.9</td>
<td>0.9</td>
<td>1.0</td>
<td>0.9</td>
<td>1.0</td>
<td>0.8</td>
<td>0.9</td>
<td>1.3</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>0.7</td>
<td>...</td>
<td>...</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>1.4</td>
<td>1.4</td>
<td>1.3</td>
<td>1.1</td>
<td>1.8</td>
<td>1.1</td>
<td>1.2</td>
<td>1.6</td>
<td>0.9</td>
<td>0.9</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>0.9</td>
<td>0.7</td>
<td>...</td>
<td>1.4</td>
<td>0.8</td>
<td>0.6</td>
<td>0.8</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14.5</td>
<td>14.3</td>
<td>14.9</td>
<td>15.2</td>
<td>15.1</td>
<td>13.9</td>
<td>15.3</td>
<td>15.7</td>
<td>14.8</td>
<td>13.3</td>
<td>14.1</td>
<td>11.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25.0</td>
<td>26.0</td>
<td>24.4</td>
<td>25.9</td>
<td>26.4</td>
<td>22.5</td>
<td>24.7</td>
<td>25.9</td>
<td>27.5</td>
<td>24.4</td>
<td>25.7</td>
<td>15.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>1.6</td>
<td>1.6</td>
<td>...</td>
<td>2.1</td>
<td>0.9</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The storage temperature of both samples, No. 1 and No. 2 were administrated below -5°C, but of the sample of No. 3 it was accidentally raised above 0°C for 2 days during cold storage.

*...... Peroxide value
は直線関係のあることを指摘している。このことから、本試料の酸価の増加および沃素価の減少の割合を観ると、酸化の程度はあまり大さくないものと考えられる。

2-2 試料魚の凍結保存中における変化：試料1の冷蔵中のPHおよびTMAの経時変化を第4表に、また脂質の脂肪酸組成の変化を第5表に示した。

試料魚はビニール袋で冷凍し冷蔵していたため保存中の乾燥および油焼けなどの外見的な変化は認められなかった。

冷蔵中、試料魚のPHおよびTMAにはほとんど変化がなく、脂質においては酸価が96日目から4.0と僅かに増加した。しかし過酸化物価にはほとんど変化が見られなかった。脂肪酸組成にも変化が認められず、第3図に示した組成基分同型ではっきりするように、冷蔵0時間の基本型によく一致している。

![Fig. 3. Integral patterns of fatty-acid composition of the lipids extracted from sand-eel, No. 1 stored at -20°C for 0, 28 and 171 days.](image)

- 0 hour, ------ 28 days, --- 171 days.

*上部数字は脂肪酸組成を示し、下部数字は酸価の数値を示す。

このことから本試料のように適当な冷蔵が行なわれるならば、たとえ6カ月間保存しても脂質の酸化程度は極少で、十分食用魚素食料になるものと思われる。

試料1と同じような保存管理の良好であった試料2については、約75日間冷蔵のものと120日間冷蔵したものについて検討した。脂質の性状値および脂肪酸組成は第5表に示した。酸価は6.4および7.1と少し高い値を示したが沃素価については、酸化による変化は認められない。また脂肪酸組成については第4図に示すようにイカハギ油の基本型によく一致している。

この試料2でトラフグを養殖した結果、正常な発育が認められた。

試料3は外見的に飼料の効果がある程度であつたが、この試料から抽出した脂質は、酸価が24.6に増加し、沃素価は140.3まで減少していた(第5表)。脂肪酸組成の面からは、ガスクロマトグラム上においてC17:0酸の位置に現われる物質、C18:1、C20:5およびC22:6酸の組成に変化が認められた。ときにC17:0酸の位置に現われる物質とC22:6酸の減少が目立っている。第4図にこの変化を種類図で示した。

すなわちイカハギ油の脂肪酸組成基本図に比較し全般的に同様が高く現われている。これは飲料不飽和酸であるC22:6酸が酸化により減少したため、低度不飽和酸の重量比が相対的に増加したことと、C17:0酸
の位置に出現した分解生成物と言われる物質の増加によるものと考えられる。上田は鰤油脂肪酸メチルエステルの自動酸化において、ガスクロマトグラム上のC17:0酸およびC17:1酸の位置に現われるピークが酸化の進行にともない増大していくこと、しかもこのピークは水素化によりC17:0酸の位置にとどまらないことを認めている。脂質の酸化は先ず不飽和酸から起こりその結果低級な分解物が生成される。しかし本実験の場合には、抽出した脂質をさらにメチルエステル化調製した場合、その間に低級な分解物の共存が不可能であった。しかしC17:0酸の位置に現われる物質だけを検知出来たので、この物質の増加で酸化の度合を評価できるものと考える。

なお試料3のイカナゴで飼育したハマチは全体体色が黒変しのち飼死した。金田らの研究によると、鰤油の毒性は高度不飽和酸のものではなく、不飽和酸が酸化したとき生成される過酸化物に基盤することが立証されている。したがってハマチが試料3の投餌によって飼死した原因は、その中に含まれる高度不飽和酸の酸化により生成された過酸化物または酸化分解物によるのかもしれない。鰤油の酸敗によって生成される過酸化物または酸化分解物が養魚にどの程度の影響を与えるかについてはさらに研究を進める。

養魚場で新鮮なイカナゴを飼育し数時間放置後にハマチなどに投餌した場合、養魚の損害がとまり飼死することもあるが、これは飼料中の脂質の酸化ということではなく別の要因によるものであろう。

3. 要 約

イカナゴ保卸中における、イカナゴ油の酸化による変化を主として脂肪酸組成ならびに脂質の性状の変化から検討した。
その結果次のことが推論される。
1. 試料イカナゴを室温（約30℃）に一昼夜放置した場合魚肉の変敗が認められても、脂肪の脂肪酸組成には変化が認められない。
2. 試料を6ヶ月間冷蔵した場合、保冷条件が良好な場合には脂質の性状変化は僅かである。また脂肪酸組成もほとんど変化が認められない。
3. 冷蔵庫に保存したイカナゴでも保冷条件が不良な場合は、脂質の酸価の増加および浸出酸の減少という酸化の現象が著しく、また脂肪酸組成面については、C22:0 酸の減少および酸化分解物（ガスクロマトグラム上で C17:0 酸の位置に出現）の増加がとくに目立った。本報を投稿したハマチは全部完死したが飼料中の脂質の酸化に完死の原因があるか否かについては今後の研究を待たねばならない。
最後に本研究に入る機会を与えた本校教授高井敬博士および有益なご教示を賜わたった武居義講師に感謝の意を表する。また試料魚を提供された光川漁業協同組合長小村栄作氏にお礼申し上げる。

4. 文献

1）農林省，1967：漁業資源生産統計年報（昭和40年），80
2）農林省，1959〜1965：第34〜40次農林省統計表。
3）農林省，1966：漁業資源生産統計年報（昭和39年）。
4）原田 邦雄，1955：近江大学農学部紀要 3，136。
5）木村 正雄，1963：日水誌，28，905。
6）上田 正，1967：本報告 15，（1）。
7）Dyer，W.J. 1945：J. Fisheries Reseach Board Can.，6，351。
9）上田 正，1965：本報告，14，（2）。
10）金田昌志・桜井寿恵・石井清之助，1945：日水誌，29，50。
11）Bartlet，John C. and John L. Iverson，1966：J. of A.O.A.C.，49，22。
12）上田 正，1966：本報告，15，（1）。