内燃機関の有効熱発生率について—II.

金岡 浩

On the Generating Rate of Effective Heat by an Internal Combustion Engine-II.

By

Hiroshi KANAOKA

To make clear the change of heat release rate in accordance with crank angle in the combustion process of a diesel engine, the author analysed the Franboro indicator diagram of the C.F.R. engine, in which the compression ratio and the injection amount were adjusted.

The author then got the following empirical formula on the assumption that heat release rate \( q \) was a sum of the values which consisted of an explosive combustion caused by the ignition lag and a smooth continuous normal combustion:

\[
q(\theta) = A\theta e^{-\frac{\theta}{\alpha}} + B\theta e^{-\frac{\theta}{\beta}}
\]

where \( A, B, \alpha, \) and \( \beta \) are the constants.

And it was found that the calculated results coincided with the observed one in considerable accuracy, moreover the relationships among the constants and the running conditions were then analysed.

1. まえがき

第1報で述べたごとく、内燃機関の燃焼過程は非常に複雑であり各種機関型式および運転条件によっても燃焼状態は異なる。各種機関型式ごとの運転条件についての有効熱発生率を究明することにより、各々の燃焼法則および内燃機関全般の燃焼法則が明らかになる。

従って燃焼過程の改善をなし、機関性能を向上させることができる。

そこで、先ず第1報による計算法により、一機関型式である過流燃焼室式ディーゼル機関（C.F.R.機

* 水産大学校研究農業 第637号，1971年7月12日 受理。
Contribution from the Shimonoseki University of Fisheries, No.637.
Received July 12, 1971.
2. 実験装置および方法

Table 1. Summarized data sheet of the running condition of the test engine according to the fuel injection shown as the fuel handle and compression ratio.

<table>
<thead>
<tr>
<th>Compression ratio, ε</th>
<th>17.98</th>
<th>15.06</th>
<th>12.04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel handle scales, F/H</td>
<td>6.4</td>
<td>5.3</td>
<td>4.2</td>
</tr>
<tr>
<td>Fuel injection (10^-2g/cycle)</td>
<td>1.87</td>
<td>2.96</td>
<td>4.14</td>
</tr>
<tr>
<td>Injection timing before TOC (deg)</td>
<td>6.5</td>
<td>5.8</td>
<td>6.4</td>
</tr>
<tr>
<td>Ignition lag (deg)</td>
<td>4.0</td>
<td>3.9</td>
<td>4.7</td>
</tr>
<tr>
<td>Measured data of the effect of heat release (cal/cycle)</td>
<td>135.6</td>
<td>233.7</td>
<td>281.0</td>
</tr>
<tr>
<td>Calculated data of the effective heat release (cal/cycle)</td>
<td>155.6</td>
<td>264.5</td>
<td>307.3</td>
</tr>
<tr>
<td>Exhaust gas temperature (°C)</td>
<td>230</td>
<td>343</td>
<td>434</td>
</tr>
<tr>
<td>Indicated horse-power (PS)</td>
<td>3.0</td>
<td>5.1</td>
<td>6.0</td>
</tr>
</tbody>
</table>

(Note) The data of the indicated horse-power were calculated by way of the Farnborough method.
内燃機関の有効熱発生率について-II.

階に分けて燃料ハンドル目盛（FH）にて3.1.4.2.5.3および6.4について運転実験を行ない、ファノボロによって指圧線図を各3枚ずつ計36枚採取した。
また運転中の各部温度、燃料消費量、噴射時角(クランク角度)および着火遅れ角の計測も行なった。
ファノボロによる指圧線図は多角サイクルの平均値は保たれるが、点の数は少ない(各サイクル自体が間一
でない)であるため、その平均値を正確に引くことが困難なため各種運転条件で指圧線図を3枚ずつ採取し
て各々の有効熱発生率を求めた。
この指圧線図を透明な紙に写し、万能投影器を用い
てT.D.C.をクランク角度0度としてT.D.C.前
後をクランク角度にて2度間隔で指圧線図の高さを万
能投影器のマイクロメータにより読取り、圧力に換算
した。
この測定結果を本報告第1報の計算式によって
有効熱発生率を求めた。

3. 計測結果およびその解析

3・1 指圧線図

採択した指圧線図を圧縮比別に第1図(1)〜(3)に示す。
この図より燃料噴射量を増加すれば、すべての圧縮
比に対して最高圧力、膨張行程中の圧力は増えるが、燃料ハンドル目盛4.2を越えると(目盛の数値が小さ
いほど噴射量は多くなる)、これらの圧力は低下してい
る。また第1表の図示馬力、排気温度も下っている。
これは機関運転時の排気色および排気温度より空気
量(酸素)不足に伴なう不完全燃焼のためである。排気色は燃料ハンドル目盛(FH)が4.2で薄黒色とな
り燃料噴射量を増加すると黒ずみがかかり、FHが3.1
となって薄黒色で波状に近い大粒の炭素粒が観われる。
すなわち完全燃焼によってCO₂となるものがCO
(発熱量はCO₂の約1/3.3)およびCとして排気さ
れる量が増えるためである。
また第1表より燃料噴射量を一定として、圧縮比を
大きくすれば図示馬力および排気温度も上昇の傾向が
示されている。これは供試機関(C.F.R.機関)の圧
縮比変更は渦流室容積を変えて行なう構造となってい
るため、圧縮比を大きくすれば渦流室容積が小ささ
なり、渦流室内を旋回する空気の回転数が増し空気と
燃料の相対速度が大きくなり、燃料の分布が良くな
って、空気利用率(空気過剰率)が向上するためと思う。

Fig. 1. Indicator diagram of C.F.R. engine.
(1): Compression ratio 17.98
(2): Compression ratio 15.06
(3): Compression ratio 12.04
Legend:
P: Cylinder gas pressure (kg/cm²)
θ: Crank angle (deg)
FH: Fuel handle scale

3・2 有効熱発生率の解析

指圧線図より求めた有効熱発生率を第3図(1)〜(2)の実線で示し、次に述べる近似式による値を破線で示す。
Fig. 2. An illustration of the generating rate of the effective heat $q$ (cal/deg).

Legend:
- $\theta$: Crank angle (deg)
- $q(\theta)$: Sum of $f(\theta)$ and $g(\theta)$
- $f(\theta)$: Generating rate of heat as an explosive combustion
- $g(\theta)$: Generating rate of heat as a smooth continuous normal combustion
- $Q_L$: The integral value of $f(\theta)$ in one cycle
- $Q_G$: The integral value of $g(\theta)$ in one cycle
第3図1-12の実測値（図の2度間隔の点）の傾向として波状を呈しているが、その理由が明らかでなく計測誤差と考えて平滑な（波状を無視した）実線とした。
第3図の形状より有効熱発生率は第2図に示すごとく、爆発的燃焼と主燃焼（爆発的燃焼に対する言葉で拡散燃焼を主燃焼と呼ぶことにする）により有効熱発生率 \( f(\theta) \), \( g(\theta) \) から構成されているものと考えて近似式を求めた。
Fig. 3. Generating rate of the effective heat and its experimental formula.

Legend:  
$\varepsilon$: The compression ratio  
FH: The fuel handle scale  
$q(\theta)$: The measured data  
$q(\theta)$: The calculated data
すなわち

\[ q(\theta) = f(\theta) + g(\theta) \]  \tag{1}

\( q(\theta) \)：有効熱発生率

\( f(\theta) \)：爆発的燃焼による有効熱発生率

\( g(\theta) \)：主燃焼による有効熱発生率

\[ f(\theta) = A \theta e^{-\frac{\theta}{a}} \]  \tag{2}

\[ g(\theta) = B \theta e^{-\frac{\theta}{b}} \]  \tag{3}

ただし

\[ \theta \]：クランク角度（T.D.C.を0度とする）A, B, aおよびbは定数にて次の方法にて決定した。

\[ f'(\theta) = A \left[ 1 - \frac{2a^2}{a^2} \right] e^{-\frac{\theta}{a}} \]

となり, \( f(\theta) \) の最大値 \( q_1 \) となるクランク角度を \( \theta_1 \) とすれば \( f'(\theta_1) = 0 \) より

\[ 1 - \frac{2a^2}{a^2} = 0 \]

\[ \therefore \alpha = \sqrt{2} \theta_1 \]  \tag{4}

(4)式を(2)式に代入して

\[ A = \frac{q_1}{\theta_1} \sqrt{e} \]  \tag{5}

同様な考え方により

\[ g'(\theta) = B \left[ 1 - \frac{\theta}{b} \right] e^{-\frac{\theta}{b}} \]

となり, \( g(\theta) \) の最大値 \( q_2 \) となるクランク角度を \( \theta_2 \) とすれば

\[ \beta = \theta_2 \]  \tag{6}

\[ B = \frac{q_2}{\theta_2} e \]  \tag{7}

したがって(1)式は

\[ q(\theta) = A \theta e^{-\frac{\theta}{a}} + B \theta e^{-\frac{\theta}{b}} \]  \tag{8}

第2図の原点（0, T.D.C.）と点 \( (q_1, \theta_1) \) および点 \( (q_2, \theta_2) \) を結んだ直線と \( q=0 \) (θ軸)との

なす角を \( \phi_1 \) および \( \phi_2 \) とすれば

\[ \frac{q_1}{\theta_1} = \tan \phi_1 \]

\[ \frac{q_2}{\theta_2} = \tan \phi_2 \]

また(4), (6)式より

\[ q_1 = \theta_1 \tan \phi_1 = \frac{\alpha}{\sqrt{2}} \tan \phi_1 \]

\[ q_2 = \theta_2 \tan \phi_2 = \beta \tan \phi_2 \]  \tag{9}

(5), (7)式と(9)式より

\[ A = \sqrt{e} \tan \phi_1 \]

\[ B = \frac{q_2}{\theta_2} e \tan \phi_2 \]  \tag{10}

(4), (6)式（\( \alpha = \sqrt{2} \theta_1, \beta = \theta_3 \)）より \( \alpha \) および \( \beta \) が小さいほどT.D.C.近くで多量に燃焼することになり各々の燃焼継続時間（クランク角度）は短くなる。また(5), (7)式より \( A \) および \( B \) が大きいほど、すなわち①式より \( \phi_1 \) および \( \phi_2 \) が大きいほど燃焼速度（燃焼の質量速度）が大きくなり、理論的にはサイクル過程の経済性を向上させることができる。
3・3 爆発的燃焼および主燃焼による有効熱発生率 $f(\theta), g(\theta)$
燃料噴射量 $C$ と $A, \alpha$ および $B, \beta$ との関係を第4図 (1)および(2)に示し、第4図(3)に圧縮比 $\varepsilon$ と $A, \alpha$ および $B, \beta$ との関係を示す。

3・3・1 運転条件が定数 $\alpha$ に及ぼす影響
第4図(1)および(3)より、$\alpha$ は圧縮比 $\varepsilon$ を増せば増大するが、燃料噴射量 $C$ が $3 \times 10^{-2}$ (g/cycle) を超え
内燃機関の有効熱発生率について—II.

とCには無関係である。すなわち圧縮比の増大に伴ない圧縮圧力、温度は高くなり着火遅れ（クランク角度）は小になる。またεが一定ならば噴射量によって着火時の可燃性混合気形成量の変化は少ないと言える。

Cが2×10^-2 (g/cycle)でεが12の場合は燃焼室壁（渦流室）温度および圧縮温度（空気）共に低いため着火遅れは長くなり、その間の噴射量は多くなる。しかし圧縮圧力、温度が低いため燃料油粒の熱中、気化が遅くなり、着火時の可燃性混合気形成量は多い。すなわち着火時までの噴射量が多く、その燃焼油の蒸発熱が多いため火炎の冷却作用が大きく、火炎温度が低下して、炎速度が小さくなることによってεは大であると考える。

噴射量が少なく（C=2×10^-2 g/cycle）圧縮比の大きい（ε=18）場合は燃焼室壁温度は下るが圧縮温度、圧力が高く第1表より着火遅れの増加はほとんど無いため着火時の可燃性混合気形成量が少なく、また炎速度が大きいためにαは小さいと考える。

3・3・2 運転条件が定数Aに及ぼす影響

Aは第4図(1)および(3)よりεが大きくなれば減少するが、Cが3×10^-2 g/cycle以上となればCによる影響は少ない。

これはεが小さいれば着火時の可燃性混合気形成量が多くなり燃焼の質量速度が大きくなるためである。Cによる影響は41、(5)式より

\[ a = \frac{A}{\alpha} \]

この式においてεが一定ならばCの変化によってAおよびαの変化が小いためqの変化も小さい。すなわち図式のpの変化が小さいことを意味する。ただしCの少ないとC=2×10^-2 g/cycle）場合にはαが変化するため、εが大きい（ε=18）場合にAは大きく、εの小さい（ε=12）場合は減少する。

これらの結果より発熱の燃焼による有効熱発生率f(θ)は圧縮比によって大きく変わるが、燃料喷射量による影響は小さい。

3・3・3 運転条件が定数βに及ぼす影響

βは第4図(2)および(3)より、Cの増加に伴ない大きくなるのでその増大割合は緩慢になっている。

これはこの増加に伴ないIV、D、C、からの噴射流速（クランク角度）が大きく、さらに空気量（酸素）不足による不完全燃焼を生じ燃焼が長引いたためと考える。すなわち燃焼室内内ではほとんど燃焼が存在していないため、温度は下がり、油沢の酸化は遅やかに行われ、高温の燃料ガス量は多いが局部的（燃料ガス濃度の高い所）酸素不足となり酸素との接触が遅れ、燃焼が長引いたと考える。

εが小さいなら発熱の燃焼に多量の酸素を消費して残留酸素量は少ないが、噴射始め角が遅れ、着火後の喷射量が小さい（着火後の噴射量が少ない）βは小さくなったと考える。

3・3・4 運転条件が定数Bに及ぼす影響

Bは(6)、(7)式より

\[ B = \frac{B}{\beta} \]

この式よりCを増せば、前記のごくとβもqも増加してBの変化は小さい。εを変更しても同じ理由（q; β=一定）によりBの変化は小さい。すなわち図式よりCおよびεを変更してもpがほぼ一定となるためBの変化は小さい。ただしCもεも小さい場合はβが大きい（前記のごとく理由不明）に適合しない。

これらの結果より発熱による有効熱発生率g(θ)は圧縮比および噴射量によって変化するがε(θ)の最大値（q）は低減B tαE (p=一定、完全燃焼すればβは噴射量に比例）線上に存在する。すなわち主燃焼による有効熱発生率曲線は相等の形となる。

- 49 -
3・4 爆発的燃焼および主燃焼による有効熱発生量 \( Q_1, Q_2 \)
燃料噴射量 \( C \) および圧縮比 \( \varepsilon \) と \( Q_1, Q_2 \) および \( Q_0 \) (\( Q_1 + Q_2 \)) の関係を第5図(1)および(2)に示す。

3・4・1 運転条件が \( Q_1 \) に及ぼす影響

これらの図より \( \varepsilon \) 一定で \( C \) を増加させ \( Q_0 \) は増大しているが、その増加割合は緩和となり \( C \) が \( 4.2 \times 10^{-2} \) g/cycle を越えると減少している。

これは前述のごとく空気量不足による不完全燃焼によるものと考える。

Fig. 5. The characteristic among the effective heat release of the experimental formula.

Legend; \( Q_1 \): The sum of \( Q_1 \) and \( Q_2 \) (cal/cycle)
\( Q_2 \): The integral value of \( f(\theta) \) in one cycle (cal/cycle)
\( Q_0 \): The integral value of \( g(\theta) \) in one cycle (cal/cycle)
\( C \): The fuel injection (\( 10^{-2} \) g/cycle)
\( \varepsilon \): The compression ratio

次に \( C \) が一定で \( \varepsilon \) を大きくすれば \( Q_0 \) は僅か増加の傾向がある。第1表の実測値による有効熱発生量 \( Q \) (シンプソンの数値積分法によって求めた) および図示馬力も \( C \) に一定にし \( \varepsilon \) を大きくすれば増加する傾向が示されている。

これにより \( \varepsilon \) を大きくすることにより空気利用率が向上したためと考える。

近似式による有効熱発生量 \( Q_0 \) は実測値による有効熱発生量 \( Q \) より大きい（特に \( \varepsilon \) が12の場合）ことが第1表および第3図(8)～(12)に示されている。したがって第5図(1)、(2)の \( \varepsilon \) が12に対する \( Q_0 \) は真の値より大きく去われている。このことを考慮すれば、\( \varepsilon \) を大きくすると明らかに \( Q_0 \) は増大すると考える。

3・4・2 運転条件が \( Q_1 \) に及ぼす影響

(1)式より \( \varepsilon \) 一定ならば、\( C \) が増しても \( \alpha \) および \( A \) の変化が小いため \( Q_1 \) の変化は小さい。すなわち噴射量が変しても爆発的燃焼による有効熱発生率 \( f(\theta) \) の変化は小いためと言える。

\( C \) を一定とし \( \varepsilon \) を増させて \( \alpha \) および \( A \) が小さくなる \( Q_1 \) は減少する。しかし \( \varepsilon \) が15以上であれば \( \varepsilon \) による影響
は小さい。
これもはを増せば着火遅れ（クランク角度）は短くなり、この間の噴射量は少なくなるが着火遅れの間の温度、圧力は高いため、および燃焼室（混合室）内の空気流量が増すことによって着火時の可燃性混合気形成量の変化は少ないためと考えられる。すなわちQ₃は着火遅れ間の喷射量でなく着火時の可燃性混合気形成量の影響が大きい。

3・4・3 運転条件がQ₃に及ぼす影響

式よりεが一定でCを増せばβおよびBが大きくなるためにQ₂₃は大きくなら、すなわちQ₂₃＝Q₂₃－Q₁₃の関係よりQ₁₃の変化が少なく、Q₁₃が増加するためQ₂₃は大きくなる。

従ってCの増加によってQ₁₃が増大した値はQ₂₃の増加によって補うことがになる。

第5図⑵よりQ₃はεに対してほぼ直線的に増加している。これはεを大きくすればQ₃が増大したが、この増大分はQ₂₃の増大によることになる。すなわちεを大きくすれば空気利用率が向上するためQ₃が増大するのはQ₂₃が増大するためでQ₁₃の影響はない。

3・4・1～2 の結果より、Q₃（負荷に比例）を一定として理論熱効率を向上させるには、εを大きく、また等容度を大きくするためQ₁₃を大きく、Q₂₃を小さくすれば良い。しかしεを大きくすればQ₂₃/Q₃（Q₃＝Q₁₃＋Q₂₃、εを大きくするとQ₁₃は減少）が大きくなり熱効率は低下する。従ってQ₁₃/Q₃、Q₂₃/Q₃では解決できない。

そこで(9)⑴式より

\[ Q₁₃ = \sqrt{\frac{\varepsilon}{\beta}} \theta^3 \tan \varphi₃ \]

この式のφ₃を小さく、εを大きくして最高圧力の許す限りQ₃を大きくする。

また(5)⑴式より

\[ Q₂₃ = \frac{\varepsilon}{\theta^3} \tan \varphi₃ \]

この式のφ₃を大きく、θ₃を小さくなるような燃焼をさせる。すなわち有効熱発生率の近似式(8式)

\[ q(\theta) = A\theta e^{-\frac{\varepsilon}{\theta}} + B\theta e^{-\frac{\varepsilon}{B}} \]

この式のA、B、αおよびβに対して(4)、(6)、および(10)式より、Aおよびβを小さく、Bおよびαを大きくすれば良い。

このような熱発生率とは爆発的燃焼の質量速度を抑制し、主燃焼の質量速度を促進させることになる。すなわち着火時の可燃性混合気形成量を少なくする。この方法には種々あるが、着火遅れ中の噴射量を多くして、しかも着火時の可燃性混合気形成量を抑制するのが効果的である。すなわち着火時に燃料ガス（蒸気）量多きが混合気形成量が少なくければ圧力上昇率は過大となりず、残り燃料ガス（着火時混合気ならなかった燃料ガス）は主燃焼で燃焼するために燃焼の質量速度を増すことができ、また着火後の噴射量および燃焼角度を小さくすることができる。

4. すすび

C.F.R.発関（中速渦流燃焼室発関）の圧縮比と燃料噴射量との変化が有効熱発生率に及ぼす影響について把握することができた。

主な結果を列記すると、

1. C.F.R.発関の有効熱発生率 q(θ) は爆発的燃焼と主燃焼による有効熱発生率の2部分より構成され、定性的に次式で表すことができた。

\[ q(\theta) = A\theta e^{-\frac{\varepsilon}{\theta}} + B\theta e^{-\frac{\varepsilon}{B}} \]
1. クランク角度（T・D・C を 0 度とする）
また定数 A, B, α, β は実験データから決定できる。

2. 定数 A および α を小さく、定数 B および α を大きくすれば、最高圧力および圧力上昇率が大とならず熱効率を向上できる。

3. 爆発的燃焼による有効熱発生率は着火時の可燃性混合気形成率で決まり、主燃焼による有効熱発生率は燃料噴射量によって決まる。

4. 爆発的燃焼による有効熱発生率は圧縮比によって変化するが、圧縮比が 15 以上となればその変化割合は小さい。

本報告で不明な点および近似式の理論的裏付けについて、現在研究中である。
この報告作成にあたって、指導を賜わった九州工業大学、河村尚平助教授に謹んで感謝の意を表する。また実験にあたって、津田時顕氏の助力に対し深謝する。

文 献

1）シトケイ，1966：ディーゼル機関の燃料噴射と燃焼
2）長尾不二夫，1964：内燃機関講義
3）金岡　浩，1969：内燃機関の有効熱発生率について—1，本報告，自然科学編 9 号