数種貝類の脂肪の脂肪酸組成について*

河 内 正 通

Fatty Acid Composition of Lipids from Some Marine Shellfishes

By
Masayuki KÔCHI

The fatty acid composition of the muscular and visceral lipids of five species of marine shellfish was determined in detail by gas-liquid chromatography, after preliminary fractionation of the fatty acid methyl esters according to unsaturation by argentation thin-layer chromatography. The results obtained are as follows:

1) Forty seven to fifty five kinds of fatty acid were found in each lipid examined, and the major components were respectively 16:0, 18:1, 20:5 and 22:6 acids in bivalvia, and 16:0, 18:1, 20:4ω6, 20:5 and 22:5 acids in gastropoda.

2) The muscular lipids showed, as compared with the visceral lipids, a high percentage of 22:6 acid in bivalvia and of 22:5 acid in gastropoda, and a low percentage of 18:1 and 18:2 acids in the former and of 14:0 acid in the latter.

3) The lipids from bivalvia showed a high percentage of 22:6 acid, and a low percentage of 20:4ω6 and 22:5 acids as compared with the lipids from gastropoda.

4) The percentage of total branched chain fatty acids in the shellfish lipids was higher than in the other marine animal lipids.

5) Isomeric eicosadienoic acid previously found in the sea-urchin gonads was detected in all of the lipids examined. The amount of the acid in these shellfishes was, however, much smaller than in the sea-urchin gonads.

1. 緒 言

貝類脂質の脂肪酸組成に関しては、いくつかの研究が行われているが、これらの研究はいずれも筋肉脂質の主成分脂肪酸を調べたものである。よって、著者は次亜亜類2種および筋足類3種について、筋肉と内臓脂肪

* 水産大学校研究業績 第735号 1975年4月20日受理
Contribution from the Shimonoseki University of Fisheries, No. 735.
Received Jan. 20, 1975.
質の脂肪酸組成を薄層クロマトグラフィー（TLC）とガスクロマトグラフィー（GLC）によって詳細に調べた。脂肪の構成脂肪酸に筋肉と内臓。また二枚貝と腹足類の間でどのような相違があるかを比較検討した。得られた結果をここに報告する。

2. 実験方法

2・1 質料：下関市吉見町付近の沿岸で採取した二枚貝（Bivalvia）3種すなわちマグレイRazor clam（*Solen strictus*）およびカタクリガイVenus shell（*Phacocone japonica*）、腹足類（Gastropoda）3種す
なわちクロアワビAbalone（*Nardusis discus*）、サザエTop shell（*Batillus cornutus*）およびオオコンタ
カガモクラTegula Omophila pfefferi carpenteriを用いた。試料の採取時期、使用個体数、貯蔵または処理後、筋肉および内臓の重量は第1表に示してある。

<table>
<thead>
<tr>
<th>Common name</th>
<th>Japanese name</th>
<th>Season</th>
<th>Number of individuals</th>
<th>Average size (cm)</th>
<th>Total weight (g)</th>
<th>Stripped shellfish Muscle Weight (g)</th>
<th>Yield (%)</th>
<th>Stripped shellfish Viscera Weight (g)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Razor clam</td>
<td>Mategai</td>
<td>Dec.</td>
<td>330</td>
<td>8.7*</td>
<td>1600</td>
<td>590</td>
<td>36.9</td>
<td>140</td>
<td>8.8</td>
</tr>
<tr>
<td>Venus shell</td>
<td>Kagaigsi</td>
<td>Dec.</td>
<td>72</td>
<td>5.2*</td>
<td>2413</td>
<td>319</td>
<td>13.2</td>
<td>130</td>
<td>5.4</td>
</tr>
<tr>
<td>Abalone</td>
<td>Kuroawabi</td>
<td>Jan.</td>
<td>17</td>
<td>8.0*</td>
<td>966</td>
<td>382</td>
<td>39.5</td>
<td>166</td>
<td>17.2</td>
</tr>
<tr>
<td>Top shell</td>
<td>Saize</td>
<td>Jan.</td>
<td>18</td>
<td>5.3**</td>
<td>1564</td>
<td>264</td>
<td>16.9</td>
<td>260</td>
<td>16.6</td>
</tr>
<tr>
<td>Tegula</td>
<td>Ookushiakagana</td>
<td>Nov.</td>
<td>135</td>
<td>3.4**</td>
<td>2400</td>
<td>197</td>
<td>8.2</td>
<td>201</td>
<td>8.4</td>
</tr>
</tbody>
</table>

* Shell length
** Shell diameter

2・2 脂質の抽出：筋肉および内臓にそれぞれ20倍量のクロホルムメタノール（2:1）溶液を加え、Folchの方法に従って脂質を抽出した。

2・3 脂肪酸分析：前報と同様に、脂質から5%塩化水素メタノール法によって製剤した脂肪酸メチルエステルを第2表に示してある条件下でGLC分析し、相対保持時間（ステアリン酸メチルの保持時間の）

<table>
<thead>
<tr>
<th>Apparatus:</th>
<th>SHIMADZU Gas Chromatograph Model GC-5A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column dimensions:</td>
<td>300 × 3.3 cm I.D., stainless steel</td>
</tr>
<tr>
<td>Solid support:</td>
<td>Shimalite W (63/80 mesh)</td>
</tr>
<tr>
<td>Stationary phase:</td>
<td>Diethylene glycol succinate polyester (10:90)</td>
</tr>
<tr>
<td>Temperature:</td>
<td>Column 190°C, injection and detector 280°C</td>
</tr>
<tr>
<td>Carrier gas:</td>
<td>Nitrogen at 30ml/min</td>
</tr>
<tr>
<td>Detector:</td>
<td>SHIMADZU Hydrogen Flame Ionization Detector Model FID-5</td>
</tr>
<tr>
<td>Sample size:</td>
<td>0.1 to 0.2μl</td>
</tr>
<tr>
<td>Analysis time:</td>
<td>Approximately 7.9 min to methyl octadecanoate</td>
</tr>
</tbody>
</table>
を1.0とする。End carbon chain, Separation factorおよびEquivalent chain length（ECL）値は
から脂肪酸を同定した。なお、試料メチルエステルの20％硝酸銀TLCによる分画および白金箔を触媒とする
水素化を行ない、微量成分を検出するとともに分析精度をたかめた。

3. 実験結果および考察

筋肉および内臓の脂質含量は第3表に示してある。貝類の脂質含量は一般に少なく、筋肉で1〜2％、内
臓で2〜3％であったが、オオコシタガニガラ内臓では約5％であった。

Table 3. The lipid content of shellfish.

<table>
<thead>
<tr>
<th>Species</th>
<th>Lipid content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Muscle</td>
</tr>
<tr>
<td>Razor clam</td>
<td>1.3</td>
</tr>
<tr>
<td>Venus shell</td>
<td>1.2</td>
</tr>
<tr>
<td>Abalone</td>
<td>1.1</td>
</tr>
<tr>
<td>Top shell</td>
<td>1.7</td>
</tr>
<tr>
<td>Tegula</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Fig. 1. Gas-liquid chromatograms of fatty acid methyl esters from muscular lipid of razor clam.

マラガイ筋肉脂質のメチルエステルの水素化前後のガスクロマトグラムを第1図に示す。脂質化物のクロ
マトグラム上で、14:0と16:0、16:0と18:0、18:0と20:0、20:0と22:0酸の大きなピークの間に、そ
それぞれ2〜3個のピークが存在する。このうち、1つは飽和奇数炭素鎖脂肪酸のピークであるが、他は飽和
直鎖脂肪酸のピークではない。これらのピークA〜Hは水素化を繰り返しても減少しないこと、およびシリ
Table 4. Equivalent chain lengths (ECL) of authentic branched chain fatty acid methyl esters and the esters (A – H) appeared on chromatogram after hydrogenation (cf. Fig. 1).

<table>
<thead>
<tr>
<th>Authentic esters</th>
<th>ECL</th>
<th>Examined esters</th>
<th>Symbol</th>
<th>ECL</th>
</tr>
</thead>
<tbody>
<tr>
<td>iso 14:0</td>
<td>13.48</td>
<td>A</td>
<td></td>
<td>13.48</td>
</tr>
<tr>
<td>Anteso 15:0</td>
<td>14.58</td>
<td>B</td>
<td></td>
<td>14.55</td>
</tr>
<tr>
<td>iso 16:0</td>
<td>15.47</td>
<td>C</td>
<td></td>
<td>15.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td>16.47</td>
</tr>
<tr>
<td>Anteso 17:0</td>
<td>16.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iso 18:0</td>
<td>17.55</td>
<td>E</td>
<td></td>
<td>17.51</td>
</tr>
<tr>
<td>Anteso 19:0</td>
<td>18.74</td>
<td>F</td>
<td></td>
<td>18.70</td>
</tr>
<tr>
<td>iso 20:0</td>
<td>19.57</td>
<td>G</td>
<td></td>
<td>19.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td>20.52</td>
</tr>
<tr>
<td>Anteso 21:0</td>
<td>20.74</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. Relative retention time plotted against the number of carbon atoms of fatty acid.

15:0 およびアンテイゾ12:0 脂肪酸と同定した。また、ピークDおよびHは第2図の相対保持時間－炭素数直線でイソ型の分支脂肪酸の直線上に存在することから、それぞれイソ17:0 およびイソ21:0 脂肪酸と同定した。しかしながら、ピークEは試料メチルエステルでは1.9%、その水素化物では5.4%であったので、イソ18:0 脂肪酸のほかに脂肪酸18のイソ型不飽和分支脂肪酸の存在が示唆された。試料メチルエステルのクロマト
<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Razor clam</th>
<th>Venus shell</th>
<th>Abalone</th>
<th>Top shell</th>
<th>Tegula</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:0</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
</tr>
<tr>
<td>13:0</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
</tr>
<tr>
<td>Iso 14:0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>:0</td>
<td>1.8</td>
<td>2.1</td>
<td>0.7</td>
<td>2.4</td>
<td>3.0</td>
</tr>
<tr>
<td>:1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>:3ω6</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
<td>0.2</td>
</tr>
<tr>
<td>Anteiso 15:0</td>
<td>0.3</td>
<td>0.6</td>
<td>0.1</td>
<td>0.4</td>
<td>Trace</td>
</tr>
<tr>
<td>:0</td>
<td>0.7</td>
<td>0.6</td>
<td>0.4</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Iso 16:0</td>
<td>1.7</td>
<td>1.1</td>
<td>1.4</td>
<td>0.8</td>
<td>1.8</td>
</tr>
<tr>
<td>:0</td>
<td>16.3</td>
<td>12.3</td>
<td>18.2</td>
<td>16.1</td>
<td>21.9</td>
</tr>
<tr>
<td>:1ω7</td>
<td>1.2</td>
<td>2.1</td>
<td>0.5</td>
<td>2.9</td>
<td>0.9</td>
</tr>
<tr>
<td>:2ω4</td>
<td>0.2</td>
<td>0.1</td>
<td>Trace</td>
<td>Trace</td>
<td>0.2</td>
</tr>
<tr>
<td>:3ω4</td>
<td>0.2</td>
<td>0.1</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
</tr>
<tr>
<td>:4ω3</td>
<td>Trace</td>
<td>1.3</td>
<td>0.2</td>
<td>0.1</td>
<td>Trace</td>
</tr>
<tr>
<td>Anteiso 17:0</td>
<td>2.7</td>
<td>1.8</td>
<td>2.6</td>
<td>2.2</td>
<td>Trace</td>
</tr>
<tr>
<td>:0</td>
<td>2.7</td>
<td>2.2</td>
<td>2.5</td>
<td>1.9</td>
<td>1.3</td>
</tr>
<tr>
<td>:1</td>
<td>0.1</td>
<td>0.2</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
</tr>
<tr>
<td>Iso 18:0</td>
<td>1.9</td>
<td>1.7</td>
<td>2.7</td>
<td>1.4</td>
<td>2.0</td>
</tr>
<tr>
<td>:0</td>
<td>3.5</td>
<td>2.9</td>
<td>0.3</td>
<td>2.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Iso 1ω9</td>
<td>10.6</td>
<td>16.5</td>
<td>8.2</td>
<td>14.8</td>
<td>12.0</td>
</tr>
<tr>
<td>:2ω6</td>
<td>3.2</td>
<td>7.1</td>
<td>1.7</td>
<td>4.3</td>
<td>1.3</td>
</tr>
<tr>
<td>:3ω6</td>
<td>0.3</td>
<td>0.7</td>
<td>0.3</td>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>:3ω3</td>
<td>1.1</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>2.8</td>
</tr>
<tr>
<td>:4ω3</td>
<td>2.5</td>
<td>2.1</td>
<td>3.3</td>
<td>2.2</td>
<td>1.0</td>
</tr>
<tr>
<td>Anteiso 19:0</td>
<td>0.5</td>
<td>0.4</td>
<td>0.5</td>
<td>0.4</td>
<td>Trace</td>
</tr>
<tr>
<td>:0</td>
<td>0.2</td>
<td>Trace</td>
<td>0.4</td>
<td>Trace</td>
<td>Trace</td>
</tr>
<tr>
<td>:1</td>
<td>0.2</td>
<td>0.2</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
</tr>
<tr>
<td>Iso 20:0</td>
<td>0.3</td>
<td>0.2</td>
<td>0.6</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>:0</td>
<td>0.1</td>
<td>0.3</td>
<td>Trace</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>:1ω9</td>
<td>4.4</td>
<td>5.4</td>
<td>3.1</td>
<td>4.7</td>
<td>3.7</td>
</tr>
<tr>
<td>:2 isomer</td>
<td>1.1</td>
<td>1.2</td>
<td>0.8</td>
<td>1.1</td>
<td>0.4</td>
</tr>
<tr>
<td>:2ω6</td>
<td>1.5</td>
<td>1.7</td>
<td>1.6</td>
<td>1.2</td>
<td>0.3</td>
</tr>
<tr>
<td>:3ω9</td>
<td>Trace</td>
<td>0.5</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
</tr>
<tr>
<td>:3ω6</td>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>:4ω6</td>
<td>4.0</td>
<td>3.4</td>
<td>3.7</td>
<td>2.7</td>
<td>8.7</td>
</tr>
<tr>
<td>:4ω3</td>
<td>0.6</td>
<td>0.2</td>
<td>0.5</td>
<td>0.7</td>
<td>1.3</td>
</tr>
<tr>
<td>:5ω3</td>
<td>7.0</td>
<td>5.3</td>
<td>10.7</td>
<td>9.8</td>
<td>8.8</td>
</tr>
<tr>
<td>Iso 21:0</td>
<td>0.3</td>
<td>0.6</td>
<td>0.7</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>:0</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
</tr>
<tr>
<td>:1ω9</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
</tr>
<tr>
<td>:2ω7</td>
<td>0.2</td>
<td>0.3</td>
<td>Trace</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>:3ω6</td>
<td>Trace</td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>:5ω2</td>
<td>0.7</td>
<td>0.4</td>
<td>0.7</td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td>Iso 22:0</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
<td>Trace</td>
</tr>
<tr>
<td>:0</td>
<td>Trace</td>
<td>0.7</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>:1ω9</td>
<td>0.3</td>
<td>1.0</td>
<td>0.3</td>
<td>0.3</td>
<td>1.0</td>
</tr>
<tr>
<td>:2ω6</td>
<td>4.1</td>
<td>3.9</td>
<td>4.3</td>
<td>4.9</td>
<td>4.2</td>
</tr>
<tr>
<td>:3ω6</td>
<td>0.6</td>
<td>0.8</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

* Includes a small amount of 20:3ω3 acid.
<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Razor clam</th>
<th>Venus shell</th>
<th>Abalone</th>
<th>Top shell</th>
<th>Tegula</th>
</tr>
</thead>
<tbody>
<tr>
<td>22:3Ω3</td>
<td>0.9</td>
<td>0.5</td>
<td>1.0</td>
<td>0.4</td>
<td>2.0</td>
</tr>
<tr>
<td>24:3Ω3</td>
<td>1.0</td>
<td>0.9</td>
<td>1.0</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>26:3Ω3</td>
<td>2.1</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>14.0</td>
<td>8.3</td>
<td>15.1</td>
<td>9.8</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Anteiso 23:0
	Trace
	-0.7
	0.6
	Trace
	-0.3

| 22:6Ω3? | 0.3 |
| 3:0Ω6? | Trace |

Iso 24:0
| | 0.5 |
| | 0.6 |

| 3:0Ω6? | -0.5 |
| | 0.5 |

| Iso 25:0 | 0.3 |
| | -0.3 |

| 25:0 | -0.6 |

グラム上で、この不飽和長鎖脂肪酸が液状となって溶出していると考えられるピークは、量的にみて、18:0 または18:1 酸のピーク以外には存在しない。WOLFE ら(1)は淡水魚でミーニから18:1 分岐脂肪酸を検出し、相対保証時間が0.1 であると報告している。頂部印TLCで分画した魚類肉とモノエン酸を含有する油のガスクロマトグラム上には、18:0 および18:1 酸の大きなピークが存在するため、イソ 18:1 酸のピークを確認することも出来た。また、モノエン酸を含む焼肉には、イソ 18:2 酸のピークが存在しなかった。このことからして、問題の魚種の6のイソ型不飽和分岐脂肪酸はイソ 18:1 酸であると考えられる。

筋肉脂肪に含有する3種の魚における筋肉または内臓脂肪の脂肪酸組成はまたそれぞれ類似し、筋肉脂肪の主な構成脂肪酸は16:0, 18:1, 20:0, 22:6, 20:4 および22:5 酸であり、内臓脂肪のそれは16:0, 18:1, 20:4 および22:5 酸であつ、筋肉と内臓脂肪を比較すると、14:0 および22:5 酸の含有率に明らかに差異が認められた。すなわち、筋肉で22:5 酸、内臓で14:0 酸がより高かった。

つきに、二枚貝と特に魚の筋肉脂肪の脂肪酸組成を比較すると、20:4 および22:6 酸の含有率に明らかに差異が認められた。すなわち、二枚貝で22:5 酸、筋肉で20:4 および22:5 酸がより高かった。新間ら(10)も見果たされた筋肉脂肪について同様傾向を認めている。内臓脂肪でも全く同様な傾向が第5 表で認められたが、筋肉脂肪ほど顕著でない。

著物性プランクトン(10)をもとに廃料としている二枚貝の脂肪で20:5 および22:6 酸、海藻(13)の廃料としている廃酸類の脂肪で20:4 および22:5 酸の含有率が高いのは、いずれも廃料脂肪に直接
由来していると考えられるが、腹足類で貯蔵脂肪に含有されていない22:5 酸の含有率が比較的高く、水産動物脂肪に普遍的に分布する22:6 酸の含有率が低いのは特異的である。このことは、特定における脂肪酸の生合成を考える上で興味深い。

また、近年分枝鎖脂肪酸が多数の水産物脂肪から検出されているが、一般にその含有率は低い。しかしながら、桑井ら4)はアラクビニカ油イソ型の分枝鎖脂肪酸の含有率が著しく高いことを報告している。貯蔵脂肪では、上野7)がアザラシ脂肪から炭素数14、16および18の分枝鎖脂肪酸を検出した以外に、分枝鎖脂肪酸の存在についての報告は見あたらない。

しかし、その結果、特定の脂肪酸から多数の分枝鎖脂肪酸が検出された。すなわち、イソ 16:1、イソ18:1、イン＝18:0 およびアントウイソ 21:0 酸が仮定したすべての脂質中に見出され、これらの種類の酸および不飽和分枝鎖脂肪酸が一部の脂質から検出された。これらの分枝鎖脂肪酸の総含有率、筋肉脂肪 5.4～14.3%、内臓脂肪 4.5～10.2%であった。特に、クロアウ・およびオオコリヒガンガの肉を除く他の部位では 18:1 酸の含有率が検出され、含有率がマスガイとカガミイロの筋肉および内臓、サザエの筋肉脂肪で 3%以上に達したことは注目すべきである。

また、著者7)がウニ生産製油中に約 7%存在することを指摘している 22:6 酸は、金星異形体が仮定したすべての見出脂質からも検出され、含有率は低かった。また、脂質含有量を考慮しても、特定のこの位置異形体含有ウニ生産油に比べて非常に少ない。

4. 摘 要

二枚貝（マチガイ、カガミイロ）および腹足類（クロアウビ、サザエ、オオコリヒガンガ）の筋肉ならびに内臓脂肪をメチル化し、精製したのち、GLC 分析することによって脂肪酸組成を詳細に調べ、比較検討した。

1. 貯蔵脂肪から検出された酸である 47～55 種類の脂肪酸が検出された。

3. 腹足類脂肪のヒメ型脂肪酸は 16:0、18:1、21:4 δ6、20:5 および 22:5 酸であった。また、筋肉と内臓脂肪を比較すると、14:1 および 22:5 酸の含有率に明らかな差異が認められ、筋肉で 22:5 酸、内臓で 14:1 酸がより高かった。

5. 多数の分枝鎖脂肪酸が検出され、これらの酸含有率は、筋肉脂肪で 5.4～14.3%、内臓脂肪で 4.5～10.2% であった。

6. 20:2 酸は異形体がすべての見出脂質から検出された。しかしながら、その含有量はウニ生産油に比べて非常に少なかった。

結論を、指導者ならびに本報のとりまとめにあたりご助言をいただいた九州大学農学部 浪水正道教授に深く感謝の意を表する。
文献

1）新谷克一郎・片口格子，1964：日水誌，30，153。
3）東田正・上野誠一，1968：油化学，17，39。
4）東田正・上野誠一，1968：油化学，18，478。
5）林賢治・山田武，1971：日本水産学会秋季大会講演要旨集，p. 113。
6）林 崎，1971：油化学，20，726。
7）上田正，1974：日水誌，40，944。
9）河内正通，1973：本報告，22，95。
13）林賢治・田田龍・加藤和昭・山田武，1974：日水誌，40，609。
14）金田直志・荒井純枝，1964：日水誌，30，589。
15）新谷克一郎・田口修行，1966：日水誌，32，1037。
16）森井秀昭・金津良一，1972：日水誌，38，599。
17）河内正通，1968：本報告，17，9。