カッターの動特性に関する実験的研究 - I*

静水中における抵抗特性について

橋本 市雄・貞包 弘之・高島 末夫

Some Experimental Studies on Dynamic Characteristics of a Cutter—I.
Total Resistance of a Cutter in Still Water

By
Ichio HASHIMOTO, Hiroyuki SADAKANE, and Sueo TAKASHIMA

On account of the fact that a cutter has a great deal in common with a life-boat used on usual ships, it is necessary to develop informations on the manœuvring performance of the cutter. From the point of view, the authors has experimented on the manœuvring performance of a standard type of cutter as lines are shown in Fig. 1.

The primary objects are to clear the relations between the conditions of a cutter and the total resistance except the wind resistance. In this paper, for measurements of the total resistance, a full scale boat was towed in the middle line of the boat by using another towing ship, and towrope resistance of each boat's conditions was measured.

The boat's conditions were varied by the following test programmes, i.e., (1) increasing the displacement in the range of displacement: from 2150 kg to 4950 kg while the static trim setting at even keel was maintained constant with upright condition, (2) increasing the heeling angle in the range of angle from upright to 20 deg. while the static trim and the displacement were maintained constant, (3) changing in static trim in the range of trim from +5% to -5% while the displacement and upright condition were maintained constant.

The boat conditions were carefully set in a harbor and these experimental sea tests were carried out in calm water. In the measurements, however, any special regard

*水産大学校研究業績 第747号。 1975年7月17日 受理。
Contributor from the Shimonoseki University of Fisheries, No.747.
Received July 17, 1975.
was not paid to the effect of running trim and mean sinkage on total resistance, and to the effect of towrope tension on heeling angles and running trim.

Through the experimental sea tests the following has been made clear:

(1) The approximate values of the total resistance of a cutter are calculated as

\[R = \left(\frac{1.67v}{0.009 - 0.035w} + 63.67 \right)v + \left(\frac{-v}{0.013 - 0.053w} - 19.13 \right)v^2 \]

where

- \(R \) = Total resistance (kg)
- \(W \) = Displacement (kg)
- \(v \) = Speed (m/sec) \(0 < v < 3.0 \)
- \(w = \frac{W}{2000} \) \(2000 < W < 3000 \)

(2) Under usual boat's displacement, the total resistance showed a tendency to decrease with increasing the heel angle of a cutter.

In the case of, however, an extremely large displacement such as \(W = 4950 \text{ kg} \), the total resistance showed an inverse tendency above mentioned.

(3) Under usual boat's displacement, the total resistance showed the least resistance when the trim is 0～2% of boat length. But the total resistance with a displacement of 4950 kg, did not show the tendencies of the least resistance.

1. 結 言

カッターは操船に於ける救命艇に共通する重要な技術であり、救難艇の救難機関では常知の通り、早くから教育課程の1つとしてカッターを使用し、気象・海象を考慮しながら操船の基礎訓練を行ない、海事知識の基礎を培ってきた。また大学関係のみで実施している全国大学カッターレースは、昭和48年度には参加校12大学、第17回に達し、全国的な大会として注目を浴びている。

カッターを1つの教育設備と考えるならば、ボート自体のいろいろな性能を、ある程度定量的に知る必要がある。カッターは全国的にほぼ統一した船型格規であるから、その性能も大略共通のものであるが、それに関する適当な資料は見当らない。

要するに、本校では昭和48年度に3隻の同型カッターが代船建造された。これを機会に、カッターの特性を明らかにする必要があると考え、第一段階として船体抵抗に関する2～3の項目について海上実験を繰り返し、その解析結果を得たので報告する。

2. カッターの船型と実験方法

カッターの船型、材質については若干の変化はあるが、船型については常知の通りほぼ一定の型に落ち着いている。今回の実験に用いたカッターの線図を第1図に示す。長さ11.2m、巾6.8m、深さ0.9mで5,080トン、22馬力の機動艇を曳船として、直径3mmのクラメクロープでカッターを曳航しながら変速にかかる変力を計測した。
Fig. 1. Lines of a cutter.

Fig. 2. Effect of the ratios tow line length to towing ship length on total resistance of a towed boat under constant speed.

張力に変換器を用いて差計で測定し、オシログラフに記録し、カッターの対水速度は電気水速計（東邦電気 KK：GM－1A型）で、相対風速は熱線風速計（日本科学工業アネモマスター A M－B 11型）で計測した。

この方法で抵抗を計測する場合に、曳船の推進系性能が曳曳船の抵抗に与える影響について十分注意する必要がある。この推進系性能の影響は、曳曳船抵抗と曳曳船長さ等に影響するが、今回実験においてこの関係を調べるため、一定速度でカッターを曳航中、曳曳船長さを変化させて抵抗を測った結果は第2図のようになった。この図から明らかのように、曳曳船長さが2～4 L（L：曳曳船長さ）以下では、曳曳船の推進系性能およ
び粗粒が発生する困の影響を大きく受けみて被航船の抵抗変化は大きいが、曳航長さが5L以上になるとほぼ安定した値を示す。したがって今回の実験では、曳航長さを60m（5.6L）にして全ての大実験を実施した。

実験は特に海上平穏な日を選び、水深十分にしておかつ一塁水域で一定の曳航方向のもとで実験を行ない、極力風波等の外力の影響を受けないように考慮した。

もともとカッターの風圧抵抗の推定資料は数少ないためか見込みができないが、一般船型の場合は次式で推定されている。

\[R_w = \frac{1}{2} \rho k(\theta) C_A V^2 \]

ただし、\(A \)——水面上の船体正面の投影面積、\(V \)——相対風速、\(\rho \)——空気密度、\(C_A \)——空気抵抗係数、\(k(\theta) \)——風面影響係数、\(\theta \)——相対風向角である。

カッターの\(C_A \)については不明であるが一般船型を考慮して一定\(C_A = 0.6 \)と仮定、\(k(\theta) \)については造船協会試験水槽委員会で決定された標準曲線を採用することとする。このような数値を用い、カッターの軽荷排水量の場合は風圧抵抗を推定しめるが第3図のようにになる。一方なでカッターをブイ系留し係留索を十分伸ばした状態で、安定した風向風速を受けているときの風圧力を実測して第3図にプロットした。この図から明らかのように、カッターの風圧抵抗もこの方法である程度推定できるので、曳航実験中、計測した風向風速に対して風圧抵抗を推定して、全抵抗に修正を加えた。

![Fig. 3. Comparison of the calculated and observed of wind resistance, which received relative wind velocity from ahead.](image)

Note \(R_w \): Wind resistance (kg)
\(V \): Relative wind velocity (m/s)
\(\theta \): Angle of relative wind from ahead (deg)

- : Observed
--- : Calculated

![Fig. 4. Histogram of the speed on cutter race.](image)

(Obtained from 80 boat's data.)

カッターの排水量は基準状態を除く外にて塗装を用いて重量測定を行ない、その後積載したバラスト重量を加算することにより決定した。船底の汚れは抵抗に大きく影響することが、今回の実験中における船底状態は新造後で、抵抗に与える汚れの影響はほとんど無くと考えられる。また実験中の船体抵抗に対しては、毎回平均的な船体重量を計測し、藤井氏の式によって抵抗成分を求め全抵抗に対して修正を加えた。
カッターの傾斜角度およびトリムは同一に設定した。したがって船の運動に伴う船体沈下、トリム変化の影響および曳航張力がカッターの横傾斜、トリムに与える影響については考慮していない。

実験の速力範囲を決めるに当り、過去14回の遠水下カッターレースの速力（2kmの平均速力）分布を踏えてみると第4図のようになる。そこでこの図を参考にして速力範囲は3.0〜3.3m/secの範囲内で実験した。今後はカッターの抵抗特性を見出すのを目的としたため、次の各項の組合せについて実験を行なった。

排水量(kg) 2125、2565、3550、4950
横傾斜角(deg) 0, 5, 10, 15, 20
トリム(%) 0, 5, 10, 15, 20

3. 結果および考察

3.1 排水量の影響

排水量4950kg、傾斜角度度で等深水で浮んでいる場合の速力抵抗の実測値を第5図に示す。実測値はいくらかばらつきがあるが、フェアリング曲線の傾向は一般船の抵抗曲線とほぼ同じ傾向を示し、この排水量の場合、速力が2.0m/sec以上になると抵抗は急激に増加するように思わわれる。

カッターの排水量は、船員の体積によって相当変化するものであるが、艇体を直立、等深水の状態で排水量のみを変化させた場合の抵抗曲線を第6図に示した。またこの図から排水量ベースに一定速力抵抗の関係を示すと第7図のようになる。
排水量350kgの場合係りの小さい範囲の抵抗は、他の排水量の場合に比較して小さく計測され、いるも
検討を加えたがこの原因は明らかでない。しかし一般的に排水量の増加に伴って抵抗は増加し、その傾向は
速度が大きいほど著著である。

通常カップターの排水量は装備品を含めて船体が約1500kgと、それに製品重量が加算されるので全排水
量は2000〜3000kgとなる。そこで今回の実験で得られた資料をもとにして、カップターの排水量、速度と抵抗
の関係を求めるに次式が得られた。

\[
R = \left(\frac{1.67w}{0.099 \cdot 0.055 + 63.77} + \frac{w}{0.013 \cdot 0.051} - 19.13 \right) v^2
\]

\[
\frac{w}{2000}
\]

但し，R(kg)：抵抗，v(n/sec)：速度，W(kg)：排水量，2000 < W < 3000，0 < v < 3.0

この式は、排水量、速度ともに大きな制限があるが、実用的に役つかない範囲で任意の排水量、速度
における抵抗を推定できると思われる。

3・2 横傾斜の影響

カップターでブーリングをする場合は大きく横傾斜させて航行することにほとんど無いが、セーリングの場
合には意識的に傾斜を付けて航行する場合もある。船が横傾斜をしているときの抵抗は興味のあること
で、ヨットについてはよくからこの情報が見られるが3)、スクラーについては見当らない。そこでカップ
ターの横傾斜が抵抗に及ぼす影響をみるために、排水量を一定にし、横傾斜をした場合の速度抵抗曲線の
実測値を第8図A，B，C，Dに示した。一般に横傾斜をするとトリム変化を生じるが、今回の実験では、
Fig. 8. Effect of heeling angle on total resistance.
観のパラスト移動により常に等深水の状態で横傾斜のみ変化させた。また第 8 図から各排水量について、横傾斜角をベースに水力抵抗曲線を求めてみると第 9 図 A, B, C, D のようになる。

(A) W=2125 Kg
(B) W=2545 Kg
(C) W=3550 Kg
(D) W=4950 Kg

Fig. 9. Relation between total resistance and heeling angle. The plotted values are the values read from Fig. 8.
ヨットの実験例においては、横傾斜角の増加に伴って船体抵抗は比例して増加している。しかし、第8図、第9図から明らかなように、カッターでは傾斜角を増せば必ずしも抵抗は大きくならず、排水量の変化によって多少傾向は異なるが、むしろ常用の排水量において抵抗が減少する傾向がみられる。例えば排水量が2125～2549kgの約25度傾斜、速力3.0m/secで航走中の抵抗は、直立状態のときには約20%減少している。傾斜、速力の場合は抵抗に与える横傾斜の影響は少ないが、排水量が大きくなると速力から横傾斜の影響が現われる。カッターの通常のブリング等では排水量が450kg程度になることは無いが、この程度の排水量になると、横傾斜が大きくなるに伴って抵抗は増加し、しかも速力が大きくなるにしたがってこの傾向は明確になる。今回の実験では、排水量450kgの場合では速力3.0m/secにおいて直立時に比べて約30%の抵抗増となった。

![Fig. 10. Effect of heeling angle on increasing the wetted surface area of a cutter.](image)

カッターの排水量変化および横傾斜角の増加に伴う浸水面積の変化を調べると第10図のようにになる。この図から、横傾斜に伴う浸水面積の増加率は横傾斜角の小さい場合ほど大きい。したがって傾斜抵抗だけを考えると、横傾斜に伴って抵抗は増加するわけである。しかし実験結果抵抗が減少する傾斜を示しているのは、カッターの外板がClinker built方式であり、このため傾斜が傾斜すると外板部粘着流体の低抵抗が小さくなることや、水面面の形状変化に伴う流体抵抗の減少などが考えられる。十分な注意をして実験を実施したものの、船舶部技術の高次方程式抵抗計算をしたため何と判断しない。一般の船体が実施しているような模型による流体抵抗試験が、カッターにも実施されることを望みたい。

3.3 トリムの影響

船体にトリムが付いているければ推進性能、操縦性能等に影響を及ぼすが、ここではカッターにトリムが付いている場合のトリムと抵抗の関係を実験的に調べた。すなわち排水量一定、直立状態で浮んでいる場合に、カッターのトリムをいろいろ変化させて抵抗を計測した。その結果得られた速力抵抗曲線を第11図A、B、C、Dに示す。またこの図からトリムベースに速力抵抗曲線を求めたものを第12図A、B、C、Dに示す。
Fig. 11. Effect of change in static trim on total resistance.
Fig. 12. Relation between total resistance and static trim with different displacement. The plotted values are the values read from Fig. 11.
これらの図から、トリムが抵抗に与える影響はカッターの排水量の大小によって違っているように思われ
る。すなわち排水量の小さい場合には、速力に関係なく0〜2％のトリムで抵抗が最小値となり、それ以外
のトリムでは船首、船尾トリムとともにトリムが大きくなると抵抗は増加する傾向がある。トリム変化と抵抗
増加は排水量と速力によって違いはあるが、例えば排水量2125kg、直立状態で速力3.0 m/secで航走中の抵
抗を、船首トリム2％の場合を基準にすると、船首トリム3％では約10％増加している。また同じトリムお
よび速力ならば、船首トリムの方が抵抗は大きい。

しかし、あるトリム量のとき抵抗が最小となるような傾向は、排水量の増加と速力の増大に伴って見られ
なくなる。すなわち排水量4950kgの場合だと、船尾トリムから船首トリムになるに従って抵抗は一様に増加
し、その増加率は速力が大きいほど大きくなっている。通常カッターは、船尾に2〜3％のトリムを付けて
航走しているが、この実験結果からみて適当なトリム量と思われる。

4. 结

論

ここでは、波上においてカッターを変動する方法によって、その抵抗に関する2〜3の性質を実験的に求
めたが、その結果を要約する次のようにある。

（1）直立状態にて排水量を増加すると、航走中の抵抗は次第に増加する。また常温の排水量、速力の範
囲では実用上差しつかえない精度で抵抗を相対することができる近似式が得られた。

（2）常温の排水量では、横傾斜の増加とともにカッターの直立抵抗は、直立状態の抵抗と比較して減少
する傾向がある。しかし常温排水量2倍以上の場合は特に排水量4950kgの状態では、逆に抵抗が増
加した例もあるので、この傾向については精度のさらに低い実験方法にて確認する必要がある。

（3）常温の排水量では、トリムを船首尾いずれにも付け過ぎると抵抗は大きくなり、0〜2％船尾トリ
ムの場合が抵抗は小さい。しかし、排水量が4950kgの状態では、船首トリムから船首トリムに変化するに伴
い抵抗は増加した。

文

献

1）鈴木 工学便覧、1960；抵抗、611〜602。
2）藤井 藤田進雄、1961：自航模型による航時性の研究（2）、造船協会論文集、110。
3）造船協会特集、1937：M. DAVIDSON、快遠帆船の実験的研究、316〜326。