Effects of Added Sodium Bicarbonate on the Folding Property of Non-Rinsed Spearfish Meat Kamaboko

Moritsugu Hamada, Satoko Yanagihara, Nobuhiro Murakawa, Shizuka Katayama, Takashi Tsuru, Kunio Suetsuna, Norihisa Kai, and Yasuhiro Tanoue

The folding characteristics of spearfish kamaboko was examined to clarify the effect of added sodium bicarbonate, as a part of the investigation to process elastic kamaboko from non-rinsed fish meat. Spearfish Tetrapurus audax was chosen as sample fish because it has been thought unsuitable fish for kamaboko processing. The fish meat, having been stored under frozen at -25°C for more than one year, was processed to kamaboko by adding either 1, 2 or 3% sodium chloride. The folding test showed lowest assessment in either concentration. By adding 1.5% sodium bicarbonate to the non-rinsed spearfish meat together with 3.0% sodium chloride, pH value of the kamaboko increased to about 7.2 from 5.9-6.5 at which sodium bicarbonate was not added, and the folding test showed superior assessment. The set of results showed that non-rinsed spearfish meat was changed to elastic kamaboko by adding 1.5% sodium bicarbonate together with 3% sodium chloride.

1 緒 言

ねり製品が弾性に富む理由は、魚肉の塩浸性タンパク質が冷蔵中に互いに絡み合うことによるとされている。長浸漬タンパク質が浸漬浸漬の加熱後に巻き重ねるから、ねり製品の製造にあたっては通常水洗しを行い、水洗性タンパク質を除去する。しかし、タンパク質の有効利用という観点からは、水洗性タンパク質の除去は資源の浪費であり、魚肉を全て用いるか、あるいは水洗し回数を少なくしたねり製品加工法の開発が期待されている。一方、通常の製造方法ではかまぼこゲルになり難しいといわれる赤身魚でアルカリ屋漬けを行えばゲル形成は向上することが報告されているが、魚肉のpHを高くすることはかまぼこゲルの形成に有効ではないかと考えられている。

そこで、本研究では金魚肉を用いて弾性に富むねり製品を作成研究の一環として、魚肉のpHを高めるために塩水を添加したマサキのかまぼこゲルについて、折り曲げ特性を検討した。

2 供試魚および実験方法

2.1 供試魚およびに冷凍促す身

実験にはマサキ Tetrapturus audaxを用いた。本試料魚は釣獲後船上で直ちにフィレーとし、船内の急速冷凍庫（-30℃）で凍結したものである。陸揚げ後は-25℃下で約1年間保存されていたものを実験に用いた。試料フィレーを解凍し、表面を変色した肉（2〜3cm厚）ならびに筋や血合肉部分を除去し、サイレートカッターで用いて均一化した。約300gずつ食品包装用ラップフィルム（フリー

2004年1月14日受付。Received January 14, 2004.
* 1 無軽さまはこう製造に関する研究 I (Investigation on the Kamaboko Processing from Non-Rinsed Fish Meat I)
* 2 水産大学校食食品化学科 (Department of Food Science and Technology, National Fisheries University; Nago +-hommachi, Shimomoseki, 759-8505, Japan)
* 3 株式会社かたやま (Katayama Co. Ltd; Tondai 2992-30, Wakamatsu, Kitakyushu City, 808-0112, Japan)
2.2 食塩と重曹の添加方法
通常のかまばこ製造においては食塩は結晶の形で加える。しかし魚肉の温度が低い場合、食塩が水に溶解し塩溶性タンパク質を溶媒するまでには時間が必要である。そこで本実験では結晶のNaClのほかに食塩を溶海水（6 M NaCl）として加える実験も併せて行った。一方、重曹についてはNaClの場合と同様に、結晶あるいは濃塩水（0.8 M NaHCO₃）として加えた。

2.3 試料魚肉と濃食塩水および重曹水の混合方法
水点下近辺まで解剎した300gのマカサギまたは市販すし身をフードプロセッサー（ナショナル社製K-57型）を用いて3分間空室し、これにNaClあるいはNaHCO₃を計算値加え、約3分間ホモジナイズした。

2.4 ホモジネートの加熱方法
2.3で得られたホモジネートを塩粧（内径9 cm円柱、高さ0.5cm）に入れて成形し、塩粧を抜いて約5分間静置した。その後140℃に加熱したホットプレート上で両面をそれぞれ約3分間加熱した。焼き上がったゲルを5分ほど放冷後、折り曲げテストを行った。

2.5 ゲル物性の評価
折り曲げテストにおける評価は、得られたゲルを先に二つに折り、角度を90度変えてさらに二つに折り（四つ折り）時の挙動から、次の5段階で行った。
A 四つ折りにしても亀裂を生じない
B 二つに折り曲げて亀裂を生じない
C 二つに折り曲げて一部に亀裂を生じる
D 二つに折り曲げて半分に亀裂を生じる
E 二つに折り曲げて亀裂を全部に及ぶ

3 結果と考察

3.1 NaClの添加方法および添加濃度と折り曲げ特性の関係
通常のねり製品は、すり身にNaClを加えて冷蔵・加熱して製造される。NaCl添加量は3％以内であれば、

Table 1. Results of the folding test of kamaboko prepared by adding different methods of NaCl with various concentration

<table>
<thead>
<tr>
<th>Sample meat</th>
<th>Added method of NaCl</th>
<th>NaCl crystal</th>
<th>6 M NaCl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NaCl, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Added water, g*¹</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Spearfish meat (1)</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>pH of Surimi</td>
<td>6.3</td>
<td>6.0</td>
<td>6.3</td>
</tr>
<tr>
<td>Temp, °C*²</td>
<td>-2.2</td>
<td>-2.9</td>
<td>-3.9</td>
</tr>
<tr>
<td>Folding test*³</td>
<td>DDDDDDD</td>
<td>DDDDDDD</td>
<td>DDDDDDD</td>
</tr>
<tr>
<td>Spearfish meat (2)</td>
<td>16</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>pH of Surimi</td>
<td>6.1</td>
<td>5.9</td>
<td>6.5</td>
</tr>
<tr>
<td>Temp, °C</td>
<td>-2.2</td>
<td>-3.2</td>
<td>-3.8</td>
</tr>
<tr>
<td>Folding test</td>
<td>DDDDDDD</td>
<td>DDDDDDD</td>
<td>DDDDDDD</td>
</tr>
<tr>
<td>Walleye pollack</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>surimi</td>
<td>6.7</td>
<td>6.6</td>
<td>6.8</td>
</tr>
<tr>
<td>Temp, °C</td>
<td>-1.6</td>
<td>-2.1</td>
<td>-3.1</td>
</tr>
<tr>
<td>Folding test</td>
<td>AAAAAAAAA</td>
<td>AAAAAA</td>
<td>AAAAAA</td>
</tr>
<tr>
<td>Threadfin bream</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>surimi</td>
<td>7.5</td>
<td>7.5</td>
<td>7.4</td>
</tr>
<tr>
<td>Temp, °C</td>
<td>-1.5</td>
<td>-2.2</td>
<td>-2.2</td>
</tr>
<tr>
<td>Folding test</td>
<td>AAAAAAAAA</td>
<td>AAAAAA</td>
<td>AAAAAA</td>
</tr>
</tbody>
</table>

*¹ To make the same water content of meat or surimi, in either 300g weight.
*² Temperature of the meat just after homogenizing.
*³ Results of six samples of kamaboko gel.
NaCl添加量の増加と共に折り曲げ評価は高くなる。そこで、NaClを結晶あるいは塩漬け水（6M NaCl）としてマカジキを洗浄し、市販冷凍されたものを加え、所定の加熱して得られたゲルについて折り曲げテストを行った。これらの結果をTable 1に示す。なお、6M NaClを添加する場合、NaClと共に水も不必要に加えられるので、一連のかまばこ試験の水分含有量が同じになるように適宜加水した。

マカジキにNaClを結晶の形で加えた場合、1, 2, 3％のいずれにおいても折り曲げ評価は全てDであり、弾力のあるかまばこゲルは得られなかった。NaClを6M NaClとして加えた場合にもほとんどがD評価であった（カジキ実験1）。カジキ実験1の場合、約5分間のホモジナイズでは折り上がりがモホモネットの温度が3℃前後である、塩漬物やリグニウムの溶解が不充分ではないかと考えられたので、別に10℃になるまで約5分間ホモジナイズし、の実験を行った（カジキ実験2）。しかし、折り曲げ特性は向上しなかった。したがって、カジキ実験1および2においても折り曲げ評価が向上しなかったのは、必ずしもホモジネットの摺り上がり温度が原因ではなく、カジキ肉の特性によるものと考えられる。このことは通常のかまばこ製造法では冷凍カジキ肉はかまばこ原料としてほとんど用いないことを表しており、従来の多くの結果と一致する。

一方、スケソウダラおよびイトヨリの冷凍したものは、一部（スケソウダラ、6M NaCl添加、最終NaCl液度1％）を除いて全てがA評価であった。これらより、著者においては摺り上がり温度は2℃前後であるが、NaCl液度の違い（1～3％）、NaClの添加方法の違い（結晶、水溶液）にかかわらず、折り曲げ評価は極めて良好であった。

カジキとスケソウダラあるいはイトヨリでは魚種はもちろん、その処理法によりTable 1 に示すと、pHの影響もあるのではないかと考えられる。すなわち、カジキ肉にてスケソウダラではpHが0.4～0.5高くなり、イトヨリでは約1高いことが分る。このことからカジキ肉が弾力のあるかまばこにならなかったのは、pHが低いことも一つの要因ではないかと考えられる。

3.2 NaClとNaHCO₃の併用におけるガラパゴス特性

3.1 の実験から、カジキ肉ではNaClを3％加えても折り曲げ評価は向上しなかった。また、2種類の市販すり身との比較から、カジキ肉ではその低いpHが折り曲げ評価低下の要因となっているのではないかと考えられる。

そこでカジキ肉のpHを高くするために重曹（NaHCO₃）を加え、折り曲げ評価の向上に寄与するかどうかについて実験を行った。

解凍したマカジキ肉にNaClと重曹を結晶あるいは水溶液の形で加え、先に述べた方法（2.24）にしたがってかまばこゲルを作った。なおNaClと重曹の最終濃度は、いずれの場合でも前者では3%，後者では1.5%とした。摺り上がりホモジネットのpHと温度の測定、加熱ゲルの折り曲げ評価を行い、それらの結果をTable 2 に示す。

ホモジネットのpHは1.5%重曹を添加することによって7.1～7.3に上昇し、重曹無添加の場合と比べるとpHは約1高かった。ホモジネット温度は先の実験の場合よりも高かったが、ほぼ6℃近辺であった。折り曲げ評価はNaClあるいは重曹の加え方にかかわらず、いずれもAで

<table>
<thead>
<tr>
<th>Table 2. Results of the folding test of the spearfish tambakobo to which aqueous or crystal NaCl and NaHCO₃ were added</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample fish</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Conc. of NaCl and NaHCO₃</td>
</tr>
<tr>
<td>Method of addition*1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Added water, g*2</td>
</tr>
<tr>
<td>pH</td>
</tr>
<tr>
<td>Temp., °C*3</td>
</tr>
<tr>
<td>Folding test</td>
</tr>
</tbody>
</table>

*1 NaCl and NaHCO₃ were added to 300g spearfish meat.
*2 To make the same water content of the sample meat used.
*3 Temperature of the meat just after homogenizing.
あった。このように重曹を添加することによって、カジキ肉は水黴しを行わなくても弾性のあるかまはこゲルになった。またNaClあるいは重曹を加える場合、加え方で違いが見られなかったことから、塩の効力のための水溶液の形で加えても特に問題はないことが分かる。

このように通常の製造方法ではかまはこ原料としてはほとんど用いられないカジキであっても、重曹を添加することによって折り曲げ評価は高くなった。そのため母としてカジキ肉のpHが高くなったことと、イオン強度の増加が原因ではないかと考えられる。前報においては、Table 1に示すように低いpHがゲル化を抑制したと考えられるが、重曹添加によってpHが高くなったためにゲル化が向上したと推測される。

一方、後者の重曹添加によるイオン強度の向上の寄与について考えると、まず、NaClだけの場合と比べて重曹を添加することによってイオン強度がどれほど増大するかを計算してみた。ただし、この場合重曹は水中で完全解離すると仮定した。その結果、NaClだけの場合にはのμNaCl=0.513であり、重曹NaHCO₃を併用添加することによって0.692に向上した（μNaCl+μNaHCO₃=0.513+0.179=0.692）。したがって、両者の併用によってイオン強度は約35%向上したことになる。

一方、CO₂が水に溶解することによってH₂CO₃が生じ、これは次のように解離する。

\[\text{CO}_2 + \text{H}_2\text{O} \rightleftharpoons \text{H}_2\text{CO}_3 \]
\[\text{H}_2\text{CO}_3 \rightleftharpoons \text{H}^+ + \text{HCO}_3^- \]
\[\text{HCO}_3^- \rightleftharpoons \text{H}^+ + \text{CO}_3^{2-} \]

H₂CO₃とHCO₃⁻のpHは2.35と10.33であるので、Table 2に示したホモジネットのpH（約7.2）では約20%のH₂CO₃と約80%のHCO₃⁻が共存している状態であり、H₂CO₃はほとんど存在していない。このような状態のイオンの存在で重曹が加えられると反応(2)は左に進み、H₂CO₃の濃度は高くなるが、反応(1)によってその濃度は減少する。

1.5%重曹を添加した場合、HCO₃⁻によるイオン強度は前述の約35%よりも低いはずです。このように重曹が完全解離したとしても、イオン強度の向上はせいぜい35%であり、このわずかなイオン強度の向上が折り曲げ評価を飛躍的にAに向かさせる原因力とは考え難しい。

今回の実験から重曹添加による折り曲げ特性の向上の原因を明らかにすることはできなかったが、重曹添加の有効性を確かめることができた。今後、重曹添加の有効性の原因発明と、他魚種に対しても本方法が適用できるかどうかについて検討する必要がある。

4 要 要

魚肉を水黴ししないで弾性に富むかまはこを作る研究の一端として、魚肉のpHを高めるために重曹を添加した場合、たまはこゲルの折り曲げ特性がどのように変化するかを調べた。長期間冷蔵保存のマカジキ肉を用いて実験を行った結果、NaClのみの添加では1, 2, 3%のいずれにおいても弾性に富むかまはこゲルの得られなかった。一方、3.0%NaClと共に1.5%重曹を加えた場合、pHは重曹無添加の場合と比べて約1高くなり、弾性に富むかまはこが得られた。また、これら実験のいずれにおいても、NaClと重曹を結晶あるいは水溶液の形で加えても折り曲げ評価に違いは見られなかった。このような、冷蔵保存したマカジキから、1.5%重曹を加えることによって弾性に富むかまはこを作ることができた。

5 文 献

1）志水寛：魚肉ねり製品－理論と応用－（岡田稔・横関浩延・衣呂亜男編），初版，恒星社厚生閣，東京，1974，pp.187-188。
2）志水寛・町田律・川崎正和：多鰭類赤身魚のゲル形成能の特性，昭和52年度多鰭類赤身魚の高品質利用技術開発研究成果の概要，水産庁研究部，pp.56-65 (1978)。
3）志水寛：ねり製品，水産食品学（須山三千三・渡辺充之編），初版，恒星社厚生閣，東京，1987，pp.265-266。
4）白井一茂・一色登也・原口昌夫：クロマジキの成分とゲル化に及ぼす明しの影響について，神奈川県水産研究所研究報告，No.4，9-14 (1999)。